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Part I:
Unsaturated water flow in a two-dimensional

binary medium
Joint work with Ian Turner (QUT) and Patrick Perré (ECP)
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Unsaturated water flow

I Immiscible two-phase (air and water)
flow

I Darcy’s Law (phase α):

qα = −kr,α

µα
K (∇pα − ραg)

I Capillary pressure pc = pa − pw

Water

Solid

Air

I Mass conservation (phase α):

∂ (ραφSα)

∂t
+∇ · (ραqα) = 0

where Sw + Sa = 1

Elliot Carr 2015 QUT Maths Seminar Series 2/31



Richards’ equation

I Model assumptions:
(i) air phase is at a constant and atmospheric pressure
(ii) water phase is incompressible and of constant density

I Single equation for the water saturation:
∂θ

∂t
(h) +∇ · (−K(h) (∇h+∇y)) = 0

where h = pc/(ρwg) is the capillary pressure head, θ = φSw is the moisture
content andK is the hydraulic conductivity.

I Closure relationships [van Genuchten (1980)]:

θ(h) = θres + (θsat − θres)Se(h)

K(h) = Ksat

√
Se
(

1−
(

1− S1/m
e

)m)2

Se(h) = (1 + (−αh)n)−m

with hydraulic parameters θres, θsat, α, n andm.
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Fine-scale model

I Binary medium: Domain comprised of two
sub-domains Ωa (connected) and Ωb (inclu-
sions):

θ(h) =

{
θa(h) in Ωa

θb(h) in Ωb

K(h) =

{
Ka(h) in Ωa

Kb(h) in Ωb

I Richards’ equation in a binary medium
(i = a, b):

∂θi
∂t

(hi) +∇ · (−Ki(hi) (∇hi +∇y)) = 0

Heterogeneous domain
Ωa Ωb

I Computational cost of direct numerical simulation is prohibitively expensive
when the domain exhibits small-scale heterogeneity.
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Two-scale computational model

Macroscopic equation: ha(x, t) (x ∈ Ω)

∂θeff

∂t
(ha) +∇ · (Keff(ha) (∇ha +∇y)) = S

Microscopic equation: hb,i(x, t) (x ∈ Ci,b)

∂θb
∂t

(hb,i) +∇ · (Kb(hb,i) (∇hb,i +∇y)) = 0

Coupling between scales:
(i) Microscopic boundary condition:

hb,i(x, t) = ha(x, t) (x ∈ Γi)
(ii) Source term S represents the exchange of water

between the two sub-domains and is recovered
numerically from the micro-cell problems

Szymkiewicz and Lewandowska (2006)
Carr and Turner (2014), Carr et al. (2015)

Micro-cell (Ci)

Macro mesh on Ω
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Spatial discretisation

Control Volume Finite Element discretisation [Carr et al. (2015)]

Micro-cell (Ci) Micro mesh Micro CVs

Macro meshMacro CVs
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Imaged-based meshing of micro-cells

Image-based mesh generation using GMSH [Carr and Turner (2014)]

Bitmap image Binary image Edge detection

Full micro-cell (Ci) Ci,a only Ci,b only
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Semi-discrete system of ODEs

I Spatial discretisation can be expressed in the form [Carr et al. (2015)]

du

dt
= g(u) , u(0) = u0 ∈ RN ,

where N = n_macro_nodes + n_macro_elements × n_micro_nodes.

I Example: Sparsity pattern of the Jacobian matrix of g(u) (zoomed in)
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Time stepping: exponential integrator

Exponential Rosenbrock-Euler Method [Carr et al. (2011, 2013)]:

du

dt
= g(u)

Linearise
====⇒ du

dt
= gn + Jn(u− un)

where gn = g(un) and Jn = J(un), and solve exactly over a single time step:

un+1 = un + τnϕ(τnJn)gn

where ϕ(A) = A−1(eA − I).

I Explicit scheme

I Krylov subspacemethods for computingϕ(τnJn)gn converge rapidlywithout
preconditioning, and require only matrix-vector products with Jn:

Jnv ≈
g(un + ε‖v‖2v)− g(un)

ε‖v‖2
, ε ≈ 10−8
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Code implementation details

I Both fine-scale and two-scale codes developed in C++

I Linear algebra operations performed using BLAS and LAPACK libraries:

(a) Intel MKL (HPC Platform)
(b) Accelerate framework (Macbook Pro)

I ODE right-hand side function g(u) implemented in parallel using OpenMP

#include <omp.h>
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for
for (k=0; k<n_macro_elements; k++)
{
...

}

I Code accommodates both triangular and quadrilateral elements at both scales
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Model validation

5
0
cm

50 cm

20 cm

Connected (Ωa)

Inclusion (Ωb)

1
.7

5
cm

1.75 cm

2
.5

cm

2.5 cm

Fine-scale: 208, 676 triangular elements and 104, 859 nodes [N = 104, 859]
Two-scale: 20× 20 grid and 441 nodes (macro mesh)

264 triangular elements and 153 nodes (micro mesh) [N = 61, 641]
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Model validation

Saturation contours after 25 hours:

Fine-scale model Two-scale model
(Runtime: 2 hours, 32 mins) (Runtime: 1 min)
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Model validation

Saturation contours after 50 hours:

Fine-scale model Two-scale model
(Runtime: 2 hours, 32 mins) (Runtime: 1 min)

Elliot Carr 2015 QUT Maths Seminar Series 13/31



Model validation

Saturation contours after 100 hours:

Fine-scale model Two-scale model
(Runtime: 2 hours, 32 mins) (Runtime: 1 min)
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Model validation

Saturation contours after 400 hours:

Fine-scale model Two-scale model
(Runtime: 2 hours, 32 mins) (Runtime: 1 min)
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Application to a heterogeneous aquifer

1.5 cm

1.
5

cm

0.7m 0.5m
1.5m

1
m

0.
5

m

3 m

Connected (Ωa)

Inclusion (Ωb)

Macro mesh: 1116 elements, 608 nodes
Micro meshes: 583 elements, 339 nodes
Total number of unknowns: 608 + 1116 × 339 = 378,932
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Application to a heterogeneous aquifer

Saturation contours after 0 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 1 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 2 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 3 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 4 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 5 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 6 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 7 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 8 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 9 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 10 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 15 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 20 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 25 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 30 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 35 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 40 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 45 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 50 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 60 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 70 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 80 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 90 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 100 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 200 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 300 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Application to a heterogeneous aquifer

Saturation contours after 400 hours:

Number of OpenMP threads
1 2 4 8 12

Runtime (min:sec) 40:58 22:05 11:55 07:44 05:31
Speedup 1.00 1.86 3.44 5.30 7.43
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Summary

Pros:

3 Ability to capture fine-scale detail in heterogeneous problem
3 Produces good qualitative agreement with fine-scale model
3 Significant reduction in simulation time (compared with fine-scale model)
3 Numerically feasible for problems with very small-scale heterogeneities

Cons:

7 Restricted to heterogeneous domains comprised of two sub-domains where
one is connected and the other forms disconnected/isolated inclusions

The next stage of this research will investigate two-scale approaches for arbitrary
heterogeneous media...
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Part II:
One-dimensional diffusion in a multilayer

composite slab
Joint work with Ian Turner (QUT)
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Fine-scale model

I Diffusion in a composite slab consisting ofm layers:

κ1

Layer 1

κ2

Layer 2

κm−1

Layer m − 1

κm

Layer m

l0 l1 l2 lm−2 lm−1 lm

I Diffusion equation defined on each layer (i = 1, . . . ,m):

∂ui
∂t

= κi
∂2ui
∂x2

li−1 < x < li

I Initial condition ui(x, 0) = f(x) and external boundary conditions:

aLu1(l0, t) + bL
∂u1

∂x
(l0, t) = cL aRum(lm, t) + bR

∂um
∂x

(lm, t) = cR

I Suitable internal boundary conditions at the interfaces (i = 1, . . . ,m− 1), e.g.,

ui(li, t) = ui+1(li, t) κi
∂ui
∂x

(li, t) = κi+1
∂ui+1

∂x
(li, t)

I Interested in the case whenm is very large
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One two-scale idea...

Example: Composite slab consisting of 100 layers

b b b b b b

Macroscopic equation
∂U

∂t
=
∂F

∂x
l0 < x < lm

subject to the initial condition U(x, 0) = f(x) and external boundary conditions:

aLU(l0, t) + bL
∂U

∂x
(l0, t) = cL

aRU(lm, t) + bR
∂U

∂x
(lm, t) = cR

is evolved on a coarse grid with unknown macroscopic flux F recovered from
solution of the fine-scale model.
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One two-scale idea...

Example: Composite slab consisting of 100 layers

b

U0
b

U1
b

U2
b

U3
b

U4
b

U5

F 1
2

F 3
2

F 5
2

F 7
2

F 9
2

I Control volume discretisation in space:

dUk
dt

=
Fk+ 1

2
− Fk− 1

2

xk+ 1
2
− xk− 1

2

I Micro-cells are centered around the control volume boundaries

I Macroscopic fluxes Fk+ 1
2
and Fk− 1

2
recovered from the fine-scale solution on

the micro-cells (average of fine-scale fluxes)

I Micro-cell boundary conditions depend on the macroscopic field U
(what form should these take?)
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Analytic solution for multilayer diffusion

I Exact solution in each layer can be expressed as [Hickson et al. (2009)]:

ui(x, t) = wi(x) +

∞∑
n=0

cne
−tλ2

nφi,n(x)

I Eigenvalues and eigenfunctions satisfy:

κi
d2φi,n
dx2

+ λ2
nφi,n = 0

subject to external boundary conditions:

aLφ1,n(l0) + bL
dφ1,n

dx
(l0) = 0 , aRφm,n(lm) + bR

dφm,n
dx

(lm) = 0

and internal boundary conditions (i = 1, . . . ,m− 1):

φi,n(li) = φi+1,n(li) , κi
dφi,n
dx

(li) = κi+1
dφi+1,n

dx
(li)
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Analytic solution for multilayer diffusion

I The eigenfunctions take the form [Ozisik (1968)]:

φi,n(x) = αi,n sin

(
λn√
κi
x

)
+ βi,n cos

(
λn√
κi
x

)
and the eigenvalues λn (n = 0, 1, . . .) are the positive roots of the transcen-
dental equation:

det(A(λn)) = 0

where A is a 2m× 2mmatrix.

I For a large number of layers (largem), finding the eigenvalues is infeasible:

7 computing the determinant is numerically unstable for large matrices
7 run the risk of missing eigenvalues

I I couldn’t get it working beyond 10 layers
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Semi-analytic solution

Again, the solution is split into two parts:

ui(x, t) = wi(x) + vi(x, t)

where wi(x) is the steady state solution and vi(x, t) satisfies:

∂vi
∂t

= κi
∂2vi
∂x2

li−1 < x < li

subject to the initial, internal and external boundary conditions:

vi(x, 0) = f(x)− wi(x) ≡ f̃i(x) , i = 1, . . . ,m

aLv1(l0, t) + bL
∂v1

∂x
(l0, t) = 0

aRvm(lm, t) + bR
∂vm
∂x

(lm, t) = 0

vi(li, t) = vi+1(li, t) , i = 1, . . . ,m− 1

κi
∂vi
∂x

(li, t) = κi+1
∂vi+1

∂x
(li, t) ≡ gi(t) , i = 1, . . . ,m− 1
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Semi-analytic solution

Take Laplace transforms, and assume that the transformed solution can be repre-
sented as an orthogonal eigenfunction expansion:

vi(x, s) =
∞∑
n=0

〈vi, φi,n〉φi,n(x)

where the eigenvalues and eigenfunctions satisfy:

d2φi,n
dx2

+ λ2
i,nφi,n = 0

subject to boundary conditions local to each layer:

I First layer (i = 1): aLφ1,n(l0) + bL
dφ1,n

dx
(l0) = 0 and dφ1,n

dx
(l1) = 0

I Middle layers (i = 2, . . . ,m− 1): dφi,n
dx

(li−1) = 0 and dφi,n
dx

(li) = 0

I Last layer (i = m): dφm,n
dx

(lm−1) = 0 and aRφm,n(lm) + bR
dφm,n
dx

(lm) = 0
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Semi-analytic solution

I Eigenvalues are roots of simple transcendental equations:

– First layer (i = 1): λ1,n are positive roots of

aLλ sin(λ(l1 − l0)) = −bL cos(λ(l1 − l0))

– Middle layers (i = 2, . . . ,m− 1): λi,n are non-negative roots of

sin(λ(li − li−1)) = 0

– Last layer (i = m): λm,n are positive roots of

aRλ sin(λ(lm − lm−1)) = −bR cos(λ(lm − lm−1))

I Inverting the Laplace transformed solution, the solution within each layer is
expressed in terms of inverse Laplace transforms involving the interface func-
tions. For example, in the first layer [Carr and Turner (2015)]:

u1(x, t) = w1(x) +
∞∑
n=0

[
c1,ne

−tκ1λ
2
1,n + L−1

{
g1(s)

s+ κ1λ2
1,n

}
φ1,n(l1)

]
φ1,n(x)
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Semi-analytic solution

I Inverse Laplace transforms are computed numerically:

L−1

{
gi(s)

s+ κiλ2
n

}
≈ −2<


N/2∑
k=1

c2k−1
gi(z2k−1/t)

z2k−1 + κiλ2
nt

 ,

where c2k−1 and z2k−1 are the residues and poles of the best (N − 1, N )
rational approximation to ez on the negative real line computed using the
Carathéodory-Fejér method [Trefethen et al. (2006)].

I Advantages of this approach:
3 Eigenvalues are roots of simple transcendental equations that are easy to

solve numerically
3 Avoids solving a complicated transcendental equation for the eigenvalues

involving the matrix determinant
3 Scales well to a large number of layers (tested up to 10,000 layers with no

problems)
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Application to macroscopic modelling

I Fine-scale model: composite slab consisting ofm layers

I Macroscopic model: composite slab consisting of n layers (n� m):

Macro-layer 1 Macro-layer 2 Macro-layer n − 1 Macro-layer n

L0 L1 L2 Ln−2 Ln−1 Ln

Keff,1 Keff,2 Keff,n−1 Keff,n

∂Uk
∂t

= Keff,k
∂2Uk
∂x2

Lk−1 < x < Lk

with effective diffusivity (harmonic average) satisfying:

Lk − Lk−1

Keff,k
=
∑
i∈Sj

li − li−1

κi

where Sj is the set of micro-layers comprising macro-layer k.
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Application to macroscopic modelling

Figure: Micro diffusivities κi = 1.1 + sin(i) (i = 1, . . . , 200)

I Fine-scale model (200 layers): 20 secs runtime
I Macroscopic model (10 layers): 2 secs runtime
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Conclusions and Future Outlook

Two-scale models:

I are useful for problems involving fine-scale heterogeneities

I can produce excellent agreement with fine-scale solutions with a significant
reduction in simulation time

Future work:

I Extend the two-scale model for unsaturated water flow in a binary medium
to a full two-phase formulation (e.g., air and water or water and oil)

I Complete work on two-scale modelling for multilayer diffusion

I Overall goal will be to eventually combine these models to form a generic
two-scale model for multiphase transport/flow problems in arbitrary het-
erogeneous porous media
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Thank you!
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