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I Generic scalar transport equation:

R(x)
∂c
∂t

= ∇ · (D(x)∇c − v(x)c) + S(c, x), Ω ⊂ Rd.

I Heterogeneous media: coefficients vary spatially.

I This talk is comprised of two parts:

• Part 1:
Semi-analytical solutions to the advection-diffusion-reaction equation in heteroge-
neous (layered) media.

• Part 2:
Semi-analytical solutions to the homogenization boundary value problem for diffu-
sion in 2D heterogeneous media.

https://elliotcarr.github.io/
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R(x)
∂c
∂t
=
∂
∂x

(
D(x)

∂c
∂x
− v(x)c

)
− µ(x)c + γ(x).

c(x, t),R(x),D(x), v(x), µ(x), γ(x), θ(x) =



c1(x, t),R1,D1, v1, µ1, γ1, θ1, 0 < x < ℓ1,
c2(x, t),R2,D2, v2, µ2, γ2, θ2, ℓ1 < x < ℓ2,

...
...

cm(x, t),Rm,Dm, vm, µm, γm, θm, ℓm−1 < x < L.

c1(x, t)

Layer 1

c2(x, t)

Layer 2

cm−1(x, t)

Layer m − 1

cm(x, t)

Layer m
0 ℓ1 ℓ2 ℓm−2 ℓm−1 L

OutletInlet

x

R(x)
∂c
∂t

=
∂
∂x

(
D(x)

∂c
∂x
− v(x)c

)
− µ(x)c + γ(x).

R(x),D(x), v(x), µ(x), γ(x) =



R1,D1, v1, µ1, γ1, 0 < x < `1,

R2,D2, v2, µ2, γ2, `1 < x < `2,
...

...

Rm,Dm, vm, µm, γm, `m−1 < x < L.
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I Governing equations (Guerrero et al., 2013; van Genuchten and Alves, 1982):

Ri
∂ci

∂t
= Di

∂2ci

∂x2 − vi
∂ci

∂x
− µici + γi, i = 1, . . . ,m,

ci(x, 0) = fi,

ci(`i, t) = ci+1(`i, t),

θiDi
∂ci

∂x
(`i, t) = θi+1Di+1

∂ci+1

∂x
(`i, t),

where viθi = vi+1θi+1.

I Nomenclature:

• ci(x, t): solute concentration [ML−3] in the ith layer
• Ri: retardation factor [−]
• Di: dispersion coefficient [L2T−1]
• vi: pore-water velocity [LT−1]
• µi: rate constant for first-order decay [T−1]
• γi: rate constant for zero-order production [T−1]
• θi: volumetric water content [L3L−3] in the ith layer

https://elliotcarr.github.io/
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I Inlet boundary condition (x = 0):

• Concentration-type:

c1(0, t) = c0(t),

• Flux-type:

v1c1(0, t) −D1
∂c1

∂x
(0, t) = v1c0(t),

I Outlet boundary condition (x = L):

∂cm

∂x
(L, t) = 0.

I General boundary conditions:

Inlet: a0c1(0, t) − b0
∂c1

∂x
(0, t) = g0(t),

Outlet: aLcm(L, t) + bL
∂cm

∂x
(L, t) = gL(t).

https://elliotcarr.github.io/
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I Eigenfunction expansion solution:

ci(x, t) =

∞∑

n=1

anTn(λn; t)Xn(λn; x).

I Eigenvalues (λn, n ∈N+) are identified by substituting eigenfunctions into the boundary
and interface conditions and enforcing a non-trivial solution.

I This yields a nonlinear transcendental equation for the eigenvalues arising from the
evaluation of a 2m × 2m determinant

f (λ) = 0,

where f (λ) := det(A(λ)), A ∈ R2m×2m.

I For many layers (large m) evaluating f (λ) is numerically unstable.

I Solutions tend to breakdown for m > 10 layers (Carr and Turner, 2016).

I Solutions for maximum of seven layers given by Liu et al. (1998) (advection-diffusion
only with µi = γi = 0) and Guerrero et al. (2013) (advection-diffusion-reaction with
γi = 0).

https://elliotcarr.github.io/
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I Idea: reformulate the model into m isolated single layer problems (Carr and Turner,
2016; Rodrigo and Worthy, 2016; Zimmerman et al., 2016).

I Introduce unknown functions of time, gi(t) (i = 1, . . . ,m− 1), at the layer interfaces (Carr
and Turner, 2016; Rodrigo and Worthy, 2016):

gi(t) := θiDi
∂ci

∂x
(`i, t).

I Yields isolated single layer problems e.g. in the first layer:

R1
∂c1

∂t
= D1

∂2c1

∂x2 − v1
∂c1

∂x
− µ1c1 + γ1,

c1(x, 0) = f1,

a0c1(0, t) − b0
∂c1

∂t
(0, t) = g0(t),

θ1D1
∂c1

∂x
(`1, t) = g1(t).

I Each problem coupled together by imposing continuity of concentration at the interfaces.

https://elliotcarr.github.io/
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I Solve each layer problem expressing the solution in terms of the unknown interface
functions.

I Taking Laplace transforms yields boundary value problems e.g. in the first layer:

D1
d2C1

dx2 − v1
dC1

dx
− (µ1 + R1s)C1 = −R1 f1 −

γ1

s
,

a0C1(0, s) − b0
dC1

dx
(0, s) = G0(s),

θ1D1
dC1

dx
(`1, s) = G1(s),

where Ci(x, s) = L{ci(x, t)} denotes the Laplace transform of ci(x, t) with transformation
variable s ∈ C and Gi(s) = L{gi(t)} for i = 1, . . . ,m − 1.

I Laplace transforms of the boundary functions:

G0(s) = L{g0(t)}
GL(s) = L{gL(t)}

are assumed to be able to be found analytically.

https://elliotcarr.github.io/
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I The boundary value problems all involve second-order constant-coefficient differential
equations

I Solving using standard techniques defines the concentration in the Laplace domain:

C1(x, s) = A1(x, s)G0(s) + B1(x, s)G1(s) + P1(x, s),

Ci(x, s) = Ai(x, s)Gi−1(s) + Bi(x, s)Gi(s) + Pi(x, s), i = 2, . . . ,m − 1,

Cm(x, s) = Am(x, s)Gm−1(s) + Bm(x, s)GL(s) + Pm(x, s),

where the functions Pi, Ai and Bi (i = 1, . . . ,m) are known functions.

I To determine G1(s), . . . ,Gm−1(s), the Laplace transformations of the unknown interface
functions g1(t), . . . , gm−1(t), we enforce continuity of concentration at each interface in
the Laplace domain:

Ci(`i, s) = Ci+1(`i, s), i = 1, . . . ,m − 1. (1)

I This yields a tridiagonal system of linear equations Ax = b, where x = (G1(s), . . . ,Gm−1(s))T .

I Summary: Concentration can be evaluated at any x and s in the Laplace domain.

https://elliotcarr.github.io/
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I Inversion of the Laplace transform is carried out numerically.

I Hence, our solution method is semi-analytical.

I Trefethen et al. (2006) defines the following approximation:

ci(x, t) = L−1 {Ci(x, s)} ≈ −2
t
<

{ N∑

k=1
k odd

wkCi (x, sk)
}
,

where N is even, sk = zk/t and wk, zk ∈ C are the residues and poles of the best (N,N)
rational approximation to ez on the negative real line.

I Summary: Concentration can be evaluated at any x and t in the time domain.

I Attractiveness is that the solution is completely explicit. Unlike eigenfunction expansion
solutions that require a nonlinear algebraic equation to be solved for the eigenvalues:

f (λ) = 0,

where f (λ) := det(A(λ)), A ∈ R2m×2m.

https://elliotcarr.github.io/
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I In solute transport problems, it is common to apply a Heaviside step function at the
inlet:

c0(t) = c0H(t0 − t) =


c0, 0 < t < t0,

0, t > t0,

where c0 is a constant and t0 > 0 is the duration.

I Yields G0(s) = exp(−t0s)/s and G0(s) = v1 exp(−t0s)/s for the concentration-type and
flux-type boundary condition, respectively.

I Such exponential functions are well known to cause numerical problems in algorithms
for inverting Laplace transforms (Kuhlman, 2013).

I To overcome this problem, we use superposition of solutions

ci(x, t) =


c̃i(x, t), 0 < t < t0,

c̃i(x, t) − ĉi(x, t − t0), t > t0,

where c̃i(x, t) is the solution with g0(t) = c0 and ĉi(x, t) is the solution with g0(t) = c0,
fi = 0 and γi = 0.

https://elliotcarr.github.io/


Advection-diffusion-reaction in layered media
One layer test case

Dr Elliot Carr https://elliotcarr.github.io/ 11/31

BCs : v1c1(0, t) −D1
∂c1

∂x
(0, t) = v1c0,

∂c2

∂t
(20, t) = 0.

Benchmarked against single-layer analytical solutions (van Genuchten and Alves, 1982).

Absolute errors
t = 10−3 t = 0.1 t = 0.2 t = 0.4 t = 0.6 t = 4
4.11 × 10−14 5.53 × 10−10 8.69 × 10−9 1.24 × 10−9 5.84 × 10−8 6.10 × 10−10

https://elliotcarr.github.io/
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BCs : v1c1(0, t) −D1
∂c1

∂x
(0, t) = v1c0,

∂c5

∂t
(30, t) = 0.

Agrees with Liu et al. (1998) and Guerrero et al. (2013) solutions.

https://elliotcarr.github.io/


Advection-diffusion-reaction in layered media
Multi-layer test cases (with reaction)

Dr Elliot Carr https://elliotcarr.github.io/ 13/31

BCs : v1c1(0, t) −D1
∂c1

∂x
(0, t) = v1c0,

∂c2

∂t
(30, t) = 0.

Indicates a problem with Guerrero et al. (2013) solution for µi , 0.

https://elliotcarr.github.io/
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BCs : v1c1(0, t) −D1
∂c1

∂x
(0, t) = v1c0H(t0 − t),

∂c5

∂t
(30, t) = 0.

Agrees with standard numerical solution (finite volume).

https://elliotcarr.github.io/
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I Summary:

• Developed a semi-analytical Laplace-transform based method solution to the one-
dimensional linear advection-dispersion-reaction equation in a layered medium.

• Novelty: introduce unknown functions at the interfaces between adjacent layers,
which allows the multilayer problem to be solved separately on each layer.

• Solution is quite general. Accommodates arbitrary number of layers and arbitrary
time-varying boundary conditions at the inlet and outlet.

• Solutions generalise recent work on diffusion (Carr and Turner, 2016; Rodrigo and
Worthy, 2016) and reaction-diffusion (Zimmerman et al., 2016) in layered media.

I Limitations:

• Specific initial and interface conditions.

https://arxiv.org/abs/2001.08387 https://github.com/elliotcarr/Carr2020a

Solving advection-diffusion-reaction problems in layered media
using the Laplace transform

Elliot J. Carra

aSchool of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.

Abstract

We derive a semi-analytical Laplace-transform based solution to the one-dimensional linear advection-diffusion-reaction
equation in a layered medium. Our solution approach involves introducing unknown functions representing the diffusive
flux at the interfaces between adjacent layers, allowing the multilayer problem to be solved separately on each layer in
the Laplace domain before being numerically inverted back to the time domain. The derived solution is applicable to
the most general form of linear advection-diffusion-reaction equation, a finite medium comprising an arbitrary number
of layers, continuity of concentration and diffusive flux at the interfaces between adjacent layers and transient boundary
conditions of arbitrary type at the two boundaries. Our derived semi-analytical solution extends and addresses deficiencies
of existing Laplace-transform based solutions in a layered medium, which consider diffusion or reaction-diffusion only.
Code implementing our semi-analytical solution is provided and applied to a selection of test cases, with the reported
results in excellent agreement with a standard numerical solution and other analytical results available in the literature.

Keywords: advection diffusion reaction; analytical solution; layered media; Laplace transform.

1. Introduction

Modelling heat and mass transport across layered me-
dia finds application to several important industrial and
physical processes. Examples include: modelling solute
transport through soil layers below the ground’s surface
to determine the potential of hazardous solutes contam-
inating underlying groundwater; modelling heat conduc-
tion in composite materials to determine their effectiveness
as thermal insulators; and modelling brain tumor spread
across the white and grey matter regions of the brain due
to diffusion and proliferation. All of these processes can
be described by the advection-diffusion-reaction equation
with piecewise constant coefficients [1–3] (see Figure 1).

Analytical solutions of such advection-diffusion-
reaction equations (and analogous equations) in layered
media continue to attract interest [4–8] as they are typ-
ically more accurate and efficient compared to numerical
methods, are continuous in space and time and can be
used to validate numerical solutions [9]. Mainly due to
their prevalence in heat conduction, most analytical solu-
tions in the literature are developed for multilayer diffu-
sion problems [2, 7, 8, 10–12] with significantly less liter-
ature concerning advection-diffusion, reaction-diffusion or
advection-diffusion-reaction problems. Since the majority
of the literature for these latter problems, particular those
involving advection, is presented in the context of solute
transport through soil layers, we adopt that field’s termi-

Email address: elliot.carr@qut.edu.au (Elliot J. Carr)

nology in this paper, where the primary variable is the so-
lute concentration, dispersion is used in place of diffusion
and the coefficient of the temporal derivative is referred to
as the retardation factor [13] (Figure 1).

Analytical solutions for advection-dispersion equations
in layered media have been presented by several authors.
Amongst the earliest work in this area is that of Leij
et al. [1], who applied the Laplace transform to solve the
advection-dispersion equation (with retardation factor) on
a semi-infinite two-layer medium with finite first layer,
semi-infinite second layer and continuity of concentration
and dispersive flux at the interfaces between adjacent lay-
ers. Both concentration-type and flux-type boundary con-
ditions were considered at the inlet and a zero concentra-
tion gradient was applied at the outlet (Figure 1). Exact
expressions for the concentration in the Laplace domain
were obtained and numerically inverted. In follow up work,
Leij and van Genuchten [14] derived approximate analyt-
ical solutions by first expanding the Laplace domain con-
centration in both layers as infinite series, truncating each
series after the first term and employing analytical inver-
sion of the Laplace transform to convert the concentration
back to the time domain.

Subsequent analytical solutions for finite layered me-
dia and an arbitrary number of layers were derived by Liu
et al. [9] and then later by Guerrero et al. [6], both us-
ing the method of eigenfunction expansion. Liu et al. [9]
considered the advection-dispersion equation and Guer-
rero et al. [6] the advection-dispersion-reaction equation
with a first order decay term. Both papers treated inlet
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I Fine-scale diffusion model:

∂u
∂t

+ ∇ · (−D(x)∇u) = 0, x ∈ Ω ⊂ R2.

I If the scale at which the diffusivity D(x) changes is small compared to the size of the
domain Ω, then the amount of computation required to solve this model is prohibitive
due to the very fine mesh required to capture the heterogeneity.

I This can be overcome by homogenizing or partially-homogenizing the heterogeneous
medium Ω.

I Homogenized diffusion model:

∂U
∂t

+ ∇ · (−Deff(x)∇U) = 0, x ∈ Ω ⊂ R2.

where U(x, t) is a smoothed/coarse-scale approximation to the fine-scale solution u(x, t).

https://elliotcarr.github.io/
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I Cell problem for first column of Deff (Hornung, 1997):

∇ · (D(x)∇
(
ψ + x

))
= 0, x = (x, y) ∈ Y = [0,L]2,

ψ(x) is periodic with period Y,
1
L2

∫

Y
ψdV = 0,

Deff(:, 1) =
1
L2

∫

Y
D(x)∇

(
ψ + x

)
dV.

I Cell problem for second column of Deff (Hornung, 1997):

∇ · (D(x)∇
(
ψ + y

))
= 0, x = (x, y) ∈ Y = [0,L]2,

ψ(x) is periodic with period Y,
1
L2

∫

Y
ψdV = 0,

Deff(:, 2) =
1
L2

∫

Y
D(x)∇

(
ψ + y

)
dV.

https://elliotcarr.github.io/
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I For a layered medium, the cell problems
can be solved exactly:

Deff =

[
Da 0
0 Dh

]
,

where Da and Dh are the arithmetic and
harmonic means:

Da =
DA + DB

2
, Dh =

2DADB

DA + DB
.

DA

DB

I For complex geometries, numerical methods are required (Carr and Turner, 2014; Rupp
et al., 2018; Szymkiewicz and Lewandowska, 2006).

I The goal of this work is to develop a semi-analytical method for solving the cell problems
and computing Deff .

https://elliotcarr.github.io/
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I Complex heterogenous geometries can be represented as an array of blocks.

I Consider the Y = [0,L]2 consisting of an m2 grid of rectangular blocks:

D1,1 D1,2

D2,1 D2,2

· · ·

· · ·

.

.

.
.
.
.

Dm,1 Dm,2

0 x1 x2 xm−1 L
L

ym−1

y2

y1

0

. . .

D1,m

D2,m

Dm,m

I Each block is isotropic with its own diffusivity value.

I Consider the cell problem for Deff(:, 1) (second column follows similarly)...

https://elliotcarr.github.io/
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I Cell problem becomes:

0 = ∇ · (Di, j∇(ψi, j + x)),

where Di, j is the diffusivity in the (i, j)th
block (row i, column j).

I Solution and the flux are continuous at
each interface:

ψ1,1 ψ1,2

ψ2,1 ψ2,2

· · ·

· · ·

.

.

.
.
.
.

ψm,1 ψm,2

0 x1 x2 xm−1 L
L

ym−1

y2

y1

0

. . .

ψ1,m

ψ2,m

ψm,m

• Horizontal interfaces:

ψi, j = ψi+1, j, Di, j
∂ψi, j

∂y
= Di+1, j

∂ψi+1, j

∂y
.

• Vertical interfaces:

ψi, j = ψi, j+1, Di, j

(
∂ψi, j

∂x
+ 1

)
= Di, j+1

(
∂ψi, j+1

∂x
+ 1

)
.

https://elliotcarr.github.io/
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I Cell problem becomes:

∇
2vi, j = 0,

where Di, j is the diffusivity in the (i, j)th
block (row i, column j).

I Solution and the flux are continuous at
each interface:

v1,1 v1,2

v2,1 v2,2

· · ·

· · ·

.

.

.
.
.
.

vm,1 vm,2

0 x1 x2 xm−1 L
L

ym−1

y2

y1

0

. . .

v1,m

v2,m

vm,m

• Horizontal interfaces:

vi, j = vi+1, j, Di, j
∂vi, j

∂y
= Di+1, j

∂vi+1, j

∂y
.

• Vertical interfaces:

vi, j = vi, j+1, Di, j
∂vi, j

∂x
= Di+1, j

∂vi, j+1

∂x
.

https://elliotcarr.github.io/
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I Introduce unknown functions for the diffusive fluxes at interfaces between adjacent
blocks:

vi,j

0 xj−1 xj L
L

yi

yi−1

0

∇
2vi, j = 0

Di, j
∂vi, j

∂y = q( j−1)m+i(x)

Di, j
∂vi, j

∂y = q( j−1)m+i+1(x)

D
i,

j∂
v i
,j

∂x
=

g (
i−

1)
n+

j(
y)

D
i,j ∂v

i,j

∂x
=

g
(i−

1)n
+

j+
1 (y)

https://elliotcarr.github.io/
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I Solution on each block:

vi, j(x, y) = − ai, j,0

4l j
(x − x j)2 +

bi, j,0

4l j
(x − x j−1)2 − ci, j,0

4hi
(y − yi)2 +

di, j,0

4hi
(y − yi−1)2

− hi

∞∑

k=1

ai, j,k

γi, j,k
cosh

[
kπ(x − x j)

hi

]
cos

[
kπ(y − yi−1)

hi

]

+ hi

∞∑

k=1

bi, j,k

γi, j,k
cosh

[
kπ(x − x j−1)

hi

]
cos

[
kπ(y − yi−1)

hi

]

− l j

∞∑

k=1

ci, j,k

µi, j,k
cosh

[
kπ(y − yi)

l j

]
cos

[
kπ(x − x j−1)

l j

]

+ l j

∞∑

k=1

di, j,k

µi, j,k
cosh

[
kπ(y − yi−1)

l j

]
cos

[
kπ(x − x j−1)

l j

]
+ Ki, j,

where γi, j,k = kπ sinh
kπl j
hi

and µi, j,k = kπ sinh kπhi
l j

, hi = yi − yi−1 and l j = x j − x j−1.

https://elliotcarr.github.io/
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I Coefficients are integrals of unknown flux functions, e.g.

ai, j,k =
2
hi

∫ yi

yi−1

g(i−1)n+ j(y)

Di, j
cos

(
kπ(y − yi−1)

hi

)
dy.

I We approximate these integrals numerically using a midpoint rule, e.g.

ai, j,k ≈ 2
Di, jhi

N∑

p=1

ωp g(i−1)n+ j(yp) cos
(

kπ(yp − yi−1)
hi

)
,

where N is the number of abscissas per interface and ωp and yp are the appropriate
weights and abscissas.

I Quadrature approximation requires the evaluations of the unknown interface functions
at the abscissas, e.g. g(i−1)n+ j(yp).

I By determining these evaluations, we can compute the coefficients (e.g. ai, j,k) and thus
compute the effective diffusivity.

https://elliotcarr.github.io/
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I Enforce continuity of the solution at the abscissas along each interface, e.g.

vi+1, j(xp, yi) − vi, j(xp, yi) = 0 (horizontal interface).

I This yields a system of linear equations that can be solved for the evaluations of the
unknown interface functions:

Ax = b,

where x is a vector of dimension m2(N + 1) containing the required evaluations.

I As we have an analytical expression for the solution of the interface functions, the entries
of Deff can be expressed in terms of the coefficients, e.g.

Deff(1, 1) =
1
L2

m∑

i=1

m∑

j=1




Di, jAi, j(ai, j,0 + bi, j,0)

4
+ l2j

∞∑

k=1

(ci, j,k − di, j,k)[1 − (−1)k]

kπ


 ,

where Ai, j = l jhi is the area of the (i, j)th block.

https://elliotcarr.github.io/
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I m by m array of square blocks.

I N abscissas per interface.

I Assume spacing between abscissas
and nodes is equal.

I Linear system:

Ax = b

I Finite volume method:
Dimension of x: m2N2.

I Semi-analytical method:
Dimension of x: m2(2N + 1).

Figure 1: Abscissas (4 × 4 array of blocks).

https://elliotcarr.github.io/
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I m by m array of square blocks.

I N abscissas per interface.

I Assume spacing between abscissas
and nodes is equal.

I Linear system:

Ax = b

I Finite volume method:
Dimension of x: m2N2.

I Semi-analytical method:
Dimension of x: m2(2N + 1).

Figure 2: Nodes (4 × 4 array of blocks).

https://elliotcarr.github.io/
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Standard test case (Szymkiewicz, 2013): 4 × 4 array of blocks.
Diffusivity: 1.0 0.1.

https://elliotcarr.github.io/
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Semi-Analytical Finite Volume

N
∣∣∣(Deff − D̃eff)./Deff

∣∣∣ Runtime (s)
∣∣∣(Deff − D̃eff)./Deff

∣∣∣ Runtime (s)

4
(
6.84e-3 5.04e-3
5.04e-3 4.47e-3

)
0.00747

(
1.30e-2 2.44e-3
2.44e-3 8.47e-3

)
0.00923

8
(
3.01e-3 2.21e-3
2.21e-3 1.98e-3

)
0.0109

(
4.82e-3 1.88e-3
1.88e-3 3.14e-3

)
0.0277

16
(
1.40e-3 1.02e-3
1.02e-3 9.23e-4

)
0.0331

(
1.75e-3 9.12e-4
9.12e-4 1.14e-3

)
0.115

32
(
6.77e-4 4.94e-4
4.94e-4 4.48e-4

)
0.0629

(
6.17e-4 3.76e-4
3.76e-4 4.02e-4

)
0.530

64
(
3.42e-4 2.50e-4
2.50e-4 2.27e-4

)
0.270

(
2.05e-4 1.36e-4
1.36e-4 1.33e-4

)
2.92

D̃eff : Approximate Deff (semi-analytical or finite volume method)
Deff : Benchmark Deff using finite volume method with a very fine grid.

https://elliotcarr.github.io/
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50 × 50 100 × 100

Deff =

(
0.310 0.0177
0.0177 0.342

)
Deff =

(
0.340 0.000954

0.000954 0.304

)

Diffusivity: 1.0 0.1.

https://elliotcarr.github.io/
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I Semi-analytical method for solving boundary value problems on block locally-isotropic
heterogenous media.

I Method provides explicit formula for effective diffusivity Deff for highly complex het-
erogeneous media.

I While achieving equivalent accuracy, semi-analytical method is faster than a standard
finite volume method for the test problems we considered.

I Improved efficiency due to the much smaller linear system.

I Potential to significantly speed up coarse-scale simulations of heterogeneous diffusion
(e.g. groundwater flow, heat conduction in composite materials, etc).

https://arxiv.org/abs/1812.06680 https://github.com/NathanMarch/Homogenization
Semi-analytical solution of the homogenization boundary value problem for block

locally-isotropic heterogeneous media

Nathan G. Marcha,∗, Elliot J. Carra, Ian W. Turnera,b

aSchool of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.
bARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), Queensland University of Technology (QUT), Brisbane,

Australia.

Abstract

Direct numerical simulation of flow through heterogeneous media can be difficult due to the computational cost of
resolving fine-scale heterogeneities. One method to overcome this difficulty is to homogenize the model by replacing the
spatially-varying fine-scale diffusivity with an effective diffusivity valid across the entire domain, calculated from the
solution of an appropriate boundary value problem. In this paper, we present a new semi-analytical method for solving
the boundary value problem and computing the effective diffusivity for pixellated, locally-isotropic, heterogeneous media.
We compare our new method to a standard finite volume method and show that equivalent accuracy can be achieved
in less computational time for several standard test cases. We also demonstrate how the new method can be applied to
complex heterogeneous geometries represented by a grid of blocks. These results indicate that our new semi-analytical
method has the potential to significantly speed up simulations of flow in heterogeneous media.

Keywords: effective diffusivity; homogenization; semi-analytical solution; heterogeneous media.

1. Introduction

Diffusion processes across composite media find application in many areas, including heat conduction [12, 20, 24, 34]
and groundwater flow modelling [3, 19]. In this paper, we consider the diffusion equation:

∂

∂t
u(x, t) + ∇ · (−D(x)∇u(x, t)) = 0, x ∈ Ω, (1)

where D(x) is a spatially dependent, isotropic diffusivity and Ω consists of a periodic array of unit cells. This equation
is infeasible to solve numerically if the scale at which the diffusivity D(x) changes is small compared to the size of the
domain Ω, due to the prohibitively fine mesh required to capture the fine-scale heterogeneity [1, 6, 10, 11, 16]. One
method of overcoming this problem is to homogenize equation (1) by replacing the diffusivity D(x) by an equivalent or
effective diffusivity Deff , yielding the homogenized equation:

∂

∂t
U(x, t) + ∇ · (−Deff∇U(x, t)) = 0, x ∈ Ω, (2)

where U(x, t) provides a smoothed approximation to u(x, t). The attraction of the homogenized equation (2) over the
fine-scale equation (1) is that Deff is constant across the entire domain Ω. This means a coarser mesh can be used to solve
the homogenized equation (2) leading to more computationally efficient simulations. The efficiency of the homogenized
equation, however, is negated to some extent if the overhead of computing the effective diffusivity is high. The aim of
this paper is to develop an accurate and efficient method for solving the boundary value problem required to calculate
Deff .

According to the homogenization literature [5, 7–9, 11, 17, 35], for a periodic domain with unit cell [x0, xn]× [y0, ym]
the first and second columns of the corresponding effective diffusivity can be computed using the following formulae:

[Deff ](:,1) =
1

A

∫ ym

y0

∫ xn

x0

D(x, y)∇(ψ(x)(x, y) + x) dx dy, [Deff ](:,2) =
1

A

∫ ym

y0

∫ xn

x0

D(x, y)∇(ψ(y)(x, y) + y) dx dy, (3)

∗Corresponding author
Email addresses: nathan.march@hdr.qut.edu.au (Nathan G. March), elliot.carr@qut.edu.au (Elliot J. Carr), i.turner@qut.edu.au

(Ian W. Turner)
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Preliminary investigation into effect of coarse-graining.

Diffusivity field Solution at t = 0.1

Benchmark/Target solution field. Diffusivity: 1.0 0.1

Fine-scale equation:
∂u
∂t

+ ∇ · (−D(x)∇u) = 0.
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Preliminary investigation into effect of coarse-graining.

Diffusivity field Solution at t = 0.1

Homogenization blocks of size 2 × 2. Diffusivity: 1.0 0.1

Coarse-scale equation:
∂U
∂t

+ ∇ · (−Deff(x)∇U) = 0.
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Preliminary investigation into effect of coarse-graining.

Diffusivity field Solution at t = 0.1

Homogenization blocks of size 4 × 4. Diffusivity: 1.0 0.1

Coarse-scale equation:
∂U
∂t

+ ∇ · (−Deff(x)∇U) = 0.
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Preliminary investigation into effect of coarse-graining.

Diffusivity field Solution at t = 0.1

Homogenization blocks of size 10 × 10. Diffusivity: 1.0 0.1

Coarse-scale equation:
∂U
∂t

+ ∇ · (−Deff(x)∇U) = 0.
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Preliminary investigation into effect of coarse-graining.

Diffusivity field Solution at t = 0.1

Homogenization blocks of size 12 × 12. Diffusivity: 1.0 0.1

Coarse-scale equation:
∂U
∂t

+ ∇ · (−Deff(x)∇U) = 0.
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Preliminary investigation into effect of coarse-graining on hydraulic head fields

Diffusivity field Solution at t = 0.1

Completely homogenized. Diffusivity: 1.0 0.1

Coarse-scale equation:
∂U
∂t

+ ∇ · (−Deff∇U) = 0.


