{
UA(D Monash Workshop on Numerical Differential Equations and Applications

Melbourne, Australia, 10-14 February 2020

MONASH University

Semi-analytical solutions for transport PDEs in

heterogeneous media

Dr Elliot Carr
M elliot.carr@qut.edu.au W @ElliotJCarr @ https://elliotcarr.github.io/

QU School of Mathematical
Sciences



mailto:elliot.carr@qut.edu.au
https://twitter.com/ElliotJCarr
https://elliotcarr.github.io/

Transport equations

Heterogeneous media

Generic scalar transport equation:
R(x)% =V-(Dx)Ve-v(x)) +S(,x), QcR.

Heterogeneous media: coefficients vary spatially.

This talk is comprised of two parts:

e Part 1:
Semi-analytical solutions to the advection-diffusion-reaction equation in heteroge-
neous (layered) media.

e Part2:
Semi-analytical solutions to the homogenization boundary value problem for diffu-
sion in 2D heterogeneous media.
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Advection-diffusion-reaction in layered media

Problem description

Inlet Outlet
ci(x, t) c2(x, t) }4\% Cm-1(x, t) Cm(x, )
0 X fl [2 €m—2 gmfl L
—— Layer1 ———— Layer2 —— — Layerm —1 ——— Layer m —

R(x)% = % (D(x)g—; - v(x)c) = u(x)c + y(x).

Ry, D1, 01, p1, 1, 0<x<d{y,
R2, D3, 03, 12,2, 6 <x <0,
R(x), D(x), v(x), u(x), y(x) = i

R, D, O, Wms Ym, 1 <x <L
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Advection-diffusion-reaction in layered media (&1}

Governing equations

Governing equations (Guerrero et al., 2013; van Genuchten and Alves, 1982):

ac; %c; ac; )
R'—lzD'TI—v-—xl—y,'ci+)/i, i=1,...,m,
ci(x,0) = f;,
ci(li t) = cina (i, 1),

dc; Je
0:D; = (1) = 01 Dia — (63, ),
where v;0; = v;416i41.

Nomenclature:

e ci(x,t): solute concentration [ML™3] in the ith layer
e R;: retardation factor [—]

e D;: dispersion coefficient [L>T ]

e 7v;: pore-water velocity [LT]

e u;: rate constant for first-order decay [T

e y;: rate constant for zero-order production [T

e 0;: volumetric water content [L’L ™3] in the ith layer
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Advection-diffusion-reaction in layered media

Typical boundary conditions

Inlet boundary condition (x = 0):
e Concentration-type:
c1(0, 1) = co(),

e Flux-type:
1961
v1¢1(0, 1) — D1 ;(Or t) = vico(t),

Outlet boundary condition (x = L):

dc
ox

(L, t)=0.
General boundary conditions:
Inlet: o0, #) — by ‘%(0, £ = g0(t),

Outlet:  arem(L, t) + by %’:(L, B =gu(t).
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Advection-diffusion-reaction in layered media

Analytical solution via eigenfunction expansion

Eigenfunction expansion solution:

©0

ci(x, t) = Z an Ty (An; ) Xu(An; X).

n=1

Eigenvalues (A,,, n € N*) are identified by substituting eigenfunctions into the boundary
and interface conditions and enforcing a non-trivial solution.

This yields a nonlinear transcendental equation for the eigenvalues arising from the
evaluation of a 2m X 2m determinant

fA) =0,
where f(1) := det(A(1)), A e R¥™2m
For many layers (large m) evaluating f(A) is numerically unstable.

Solutions tend to breakdown for m > 10 layers (Carr and Turner, 2016).

Solutions for maximum of seven layers given by Liu et al. (1998) (advection-diffusion
only with y; = y; = 0) and Guerrero et al. (2013) (advection-diffusion-reaction with
yi=0).
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Advection-diffusion-reaction in layered media

Analytical solution via Laplace transform

Idea: reformulate the model into m isolated single layer problems (Carr and Turner,
2016; Rodrigo and Worthy, 2016; Zimmerman et al., 2016).

Introduce unknown functions of time, g;(f) (i = 1,...,m — 1), at the layer interfaces (Carr
and Turner, 2016; Rodrigo and Worthy, 2016):

dc;
gz(t) = 0;D; a_xl(gir t)

Yields isolated single layer problems e.g. in the first layer:

aCl 82c1 (9(31
o TP o2 “higs THa + 71,

ax,0) = fi,

9
a0c1(0,8) = bo 50,1 = go(0),

d
D1 51,0 = 51(0).

Ry

Each problem coupled together by imposing continuity of concentration at the interfaces.
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Advection-diffusion-reaction in layered media

Analytical solution via Laplace transform

Solve each layer problem expressing the solution in terms of the unknown interface
functions.

Taking Laplace transforms yields boundary value problems e.g. in the first layer:

dC1 dc,
Va2 Uld

dC
aC1(0,5) = by~ (0,5) = Go(s),

= (g1 +Rys)C1 = =Rqf1 - 7/5_1,

dcC
01013 ((1,5) = G(9),

where C;(x,s) = L{ci(x, )} denotes the Laplace transform of c;(x, t) with transformation
variable s € C and G;(s) = L{gi(t)} fori=1,...,m - 1.

Laplace transforms of the boundary functions:
Go(s) = Ligo(®)}
Gr(s) = Ligr(®)}
are assumed to be able to be found analytically.
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Advection-diffusion-reaction in layered media

Analytical solution via Laplace transform

The boundary value problems all involve second-order constant-coefficient differential
equations

Solving using standard techniques defines the concentration in the Laplace domain:
Ci(x,5) = A1(x,5)Go(s) + B1(x,5)G1(s) + P1(x,5),
Ci(x,s) = Ai(x,9)Gj_1(s) + Bi(x,8)Gj(s) + Pi(x,s), i=2,...,m~1,
Cin(x,5) = Au(x,8)G-1(5) + Bu(x,5)GL(s) + Pin(x,s),

where the functions P;, A; and B; (i = 1,...,m) are known functions.

To determine G1(s), ..., Gy-1(5), the Laplace transformations of the unknown interface
functions gi(f), ..., gm-1(f), we enforce continuity of concentration at each interface in
the Laplace domain:

Ci(€i,s) = Cina(lyys), i=1,...,m—-1 @
This yields a tridiagonal system of linear equations Ax = b, wherex = (G(s),..., Gy—1 (s))T.

Summary: Concentration can be evaluated at any x and s in the Laplace domain.
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Advection-diffusion-reaction in layered media

Analytical solution via Laplace transform

Inversion of the Laplace transform is carried out numerically.
Hence, our solution method is semi-analytical.

Trefethen et al. (2006) defines the following approximation:

N
ci(x, ) = L7HCi(x,9)} = —%‘R{ Z wiC; (x/Sk)}r
=1
K odd

where N is even, s = z;/t and wy, z; € C are the residues and poles of the best (N, N)
rational approximation to e* on the negative real line.

Summary: Concentration can be evaluated at any x and f in the time domain.

Attractiveness is that the solution is completely explicit. Unlike eigenfunction expansion
solutions that require a nonlinear algebraic equation to be solved for the eigenvalues:

fy =0,
where f(1) := det(A(1)), A e R¥™2",
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Advection-diffusion-reaction in layered media

Heaviside inlet boundary condition

In solute transport problems, it is common to apply a Heaviside step function at the
inlet:

cy, 0<t<ty,

co(t) = coH(to — t) = {O t>ho

where ¢y is a constant and ¢y > 0 is the duration.

Yields Go(s) = exp(—tos)/s and Go(s) = v exp(—fos)/s for the concentration-type and
flux-type boundary condition, respectively.

Such exponential functions are well known to cause numerical problems in algorithms
for inverting Laplace transforms (Kuhlman, 2013).

To overcome this problem, we use superposition of solutions

Ci(x, 1), 0<t<ty,
ci(x, f) ={Cz(x ) 0

Ci(x, 1) =TCilx, t —tg), t>to,

where ¢i(x, 1) is the solution with go(f) = cp and ¢i(x, ) is the solution with go(f) = co,
fi=0and y; =0.

Dr Elliot Carr https://elliotcarr.github.io/ 10/31


https://elliotcarr.github.io/

Advection-diffusion-reaction in layered media

One layer test case

t =0.001

t=0.1
. —t=0.2
1N —t=04
| N —t=0.6
| = —t=4
|
|

|

) T
R I t [days|

R

|

|

o
o

cla,t)/co [-]

(=)
o —

5 10 15 20

BCs:  0101(0,t) — Dlg—cxl(o, £) = 010, ‘Zif(zo, £ =0.

Benchmarked against single-layer analytical solutions (van Genuchten and Alves, 1982).

Absolute errors
=103 F=0.1 =02 =04 F=06 t=4
411x10°%  553x100  869%x1077 124x107 584x10°% 6.10x10°10
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Advection-diffusion-reaction in layered media

Multi-layer test cases (without reaction)

1:" T T
I
I o
I I
: | t [days]
p Lo Lo t=0.1
~ N | =
=05 \ | | i
= I [ —t=
g [N [ —t=10
T b - —t=14
[ N | —t=18
o I
Lo o
NI o
0+ | e &
0 5 10 15 20 25 30

z [cm]

BCs: v1c1(0, 1) — Dl%((), t) = v1cp, %(30, t)=0.

Agrees with Liu et al. (1998) and Guerrero et al. (2013) solutions.
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Advection-diffusion-reaction in layered media

Multi-layer test cases (with reaction)

t |days|
t=0.2
t=04

Fl—t=06

—t=038

—t=10°
x t— 00

c(x,t)/co [-]

BCs:  0101(0,t) — Dl‘zixl(o, £) = 010, %(30, £) = 0.

Indicates a problem with Guerrero et al. (2013) solution for p; # 0.
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Advection-diffusion-reaction in layered media

Multi-layer test cases

14 = -
| | | |
| | | |
| | | |
; ; ; ; t [days]
Xz ] ] =0t
s o o :i
=.05- - L .
g \ . il
et ! b —t=14
} ] —t=18
|
Oe 2 - b2 &
0 5 10 15 20 25 30
z [cm]

BCs: v1c1(0,t) — Dl%(O, t) = vicoH(to — t), %(SO, t) =0.

Agrees with standard numerical solution (finite volume).
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Advection-diffusion-reaction in layered media (&1}

Conclusions

Summary:

e Developed a semi-analytical Laplace-transform based method solution to the one-
dimensional linear advection-dispersion-reaction equation in a layered medium.

e Novelty: introduce unknown functions at the interfaces between adjacent layers,
which allows the multilayer problem to be solved separately on each layer.

e Solution is quite general. Accommodates arbitrary number of layers and arbitrary
time-varying boundary conditions at the inlet and outlet.

e Solutions generalise recent work on diffusion (Carr and Turner, 2016; Rodrigo and
Worthy, 2016) and reaction-diffusion (Zimmerman et al., 2016) in layered media.

Limitations:
e Specific initial and interface conditions.
https://arxiv.org/abs/2001.08387 https://github.com/elliotcarr/Carr2020a

Solving advection-diffusion-reaction problems in layered media
using the Laplace transform

Elliot J. Carr®

@School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.

Dr Elliot Carr https://elliotcarr.github.io/


https://elliotcarr.github.io/
https://arxiv.org/abs/2001.08387
https://github.com/elliotcarr/Carr2020a

Homogenization of 2D heterogeneous media

Introduction

Fine-scale diffusion model:
du

= +V-(-DX)Vu) =0, xeQcR>.

If the scale at which the diffusivity D(x) changes is small compared to the size of the
domain O, then the amount of computation required to solve this model is prohibitive
due to the very fine mesh required to capture the heterogeneity.

This can be overcome by homogenizing or partially-homogenizing the heterogeneous
medium Q.
Homogenized diffusion model:

‘;—Lf + V- (-Deg(x)VU) =0, x€QcR2

where U(x, t) is a smoothed/coarse-scale approximation to the fine-scale solution u(x, t).
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Homogenization of 2D heterogeneous media

Effective diffusivity for a cell Y = [0, L]

Cell problem for first column of D¢ (Hornung, 1997):
V- D@V@+x)=0, x=(@yeY=[0LP

(x) is periodic with period Y, % f PpdV =0,
Y

Degt(:, 1) = é fyD(x)V W +x)dV.

Cell problem for second column of Deg (Hornung, 1997):
V-DEV@+y)=0, x=xyeY=[0LP

(x) is periodic with period Y, % f pdV =0,
Y

Dei2)= 75 [ DWV(+y) dv
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Homogenization of 2D heterogeneous media

Solution of cell problems

For a layered medium, the cell problems

can be solved exactly: D
D 0
Dest = [ 0a Dh] ’

where D, and Dy, are the arithmetic and
harmonic means:

_ Dy + Dg

D, 2D,4Dp

D, = .
a Dy + Dg

For complex geometries, numerical methods are required (Carr and Turner, 2014; Rupp
et al., 2018; Szymkiewicz and Lewandowska, 2006).

The goal of this work is to develop a semi-analytical method for solving the cell problems
and computing Deg.

Dr Elliot Carr https://elliotcarr.github.io/
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Homogenization of 2D heterogeneous media [SUJ)

Block heterogeneous medium

Complex heterogenous geometries can be represented as an array of blocks.

Consider the Y = [0, L]? consisting of an m? grid of rectangular blocks:

0

Dy D 2 Dil
Y1
D3 1 D3 o D3
) Y2
Ym—1
D1 | D2 Doy
L
0

Each block is isotropic with its own diffusivity value.

Consider the cell problem for Deg(:, 1) (second column follows similarly)...

Dr Elliot Carr https://elliotcarr.github.io/ 19/31
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Homogenization of 2D heterogeneous media

Block heterogeneous medium

0

Cell problem becomes: Y11 | Y12 200 || g
0=V-(D;;V(¥;; +x)), Y1

where D, ; is the diffusivity in the (i, j)th Y21 | Y22 Y2,m
block (row i, column j). Y2

Solution and the flux are continuous at

each interface: Ym—1

Ym,1 | Ym,2 | Ymm

o Horizontal interfaces: Lo z) T2 Tm-1 L
i IMis1,j

lpi,j = 1Pi+1,j/ Di'ja_y = Di+1,j‘ ay .

e Vertical interfaces:

alp',' alp, 1
Yij = i, Di,j(a_;] + 1) =Dijjr1 ((;—: + 1)~

Dr Elliot Carr https://elliotcarr.github.io/ 20/31
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Homogenization of 2D heterogeneous media

Change of variable: v;; = ¥;; + x

0

Cell problem becomes: vin | viz | oo | vim
VZZJ,‘J‘ =0, n

where D;; is the diffusivity in the (i, j)th R 22 G
block (row i, column j). Y2

Solution and the flux are continuous at

each interface: Ym—1

Vm | Um2 | | Umm

e Horizontal interfaces: Lg 1 o T —1 L
dv; j oy

i = Dit1,j, Di,ja—y' = Di+1,ja_y

e Vertical interfaces:

D 301‘,;‘ 9Ui/j+1
Vi =i iji—=— =Djy1,j——.
i,j i,j+1s W ox i+1,] ox

Dr Elliot Carr https://elliotcarr.github.io/ 21/31
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Homogenization of 2D heterogeneous media

Reformulation

Introduce unknown functions for the diffusive fluxes at interfaces between adjacent

blocks:
0 | | P
: : D5, = 4G-nm+i(x)
| |
Yi—1p -~ -~ J——— == === - — = — = = p
I I > I
— 5
Vi i 3
" | | ‘I‘ Ml
l | | —>» V20, =0 S
Il [
| | =
| | 5= H
I I ° |f E
1 1 & <
| |
I I o1,
L L L Di,ja—y’ = (j-1ym+i+1 (X)
0 Lj—1 Zj L
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Homogenization of 2D heterogeneous media

Solution on individual block (Polyanin, 2002)

Solution on each block:

b Cij0
(%, y) = = (x— >2+—<x xja)? - ’(y y1)2+ (y yi1)?
- ai;, k - Xj k - V-
—h; '—j'kcosh| n(x xj)]cos[ Y-y 1)]
p Vijk hi hi

hi

Ci jk kn(y —y; km(x = xj-1)
_IJZHz/]k h[ ] [ lj] ]

kn(y Vi 1)] kn(x - x/,l)
+1 l]k 0s +K;j,
JZ l]k ij

I
.kl . kmhy
where y; jx = kmsinh h_z/ and y; jx = kmsinh %, hi = yi —yi-1 and lj = xj — xj-1.

kn(x x] 1)] [kn(y Yie 1)]

]
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Homogenization of 2D heterogeneous media

Coefficients

Coefficients are integrals of unknown flux functions, e.g.

2 (Y giaun+(Y) kn(y = yi-1)
4 jk = i fy,;l D, cos I dy.

We approximate these integrals numerically using a midpoint rule, e.g.

N
2 Z kn(yp — yi-1)
ik = D; jh; p=1 wpg(i_l)”j(yp)cos( hi ’

where N is the number of abscissas per interface and w, and y, are the appropriate
weights and abscissas.

Quadrature approximation requires the evaluations of the unknown interface functions
at the abscissas, e.g. g(i-1)n+j(Yp)-

By determining these evaluations, we can compute the coefficients (e.g. 4; jx) and thus
compute the effective diffusivity.
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Homogenization of 2D heterogeneous media

Determining evaluations of the unknown interface functions

Enforce continuity of the solution at the abscissas along each interface, e.g.

Vit (p, yi) — U,‘,]'(xp, yi) =0 (horizontal interface).
This yields a system of linear equations that can be solved for the evaluations of the
unknown interface functions:

Ax=Db,

where x is a vector of dimension m?(N + 1) containing the required evaluations.

As we have an analytical expression for the solution of the interface functions, the entries
of Degs can be expressed in terms of the coefficients, e.g.

m k
l] 1](”1]0+b1]0) 2 (erk I]k)[l ( 1)
o= 3.5 DRSS

where A; ; = I;h; is the area of the (i, j)th block.
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Linear system dimension

Comparison to a standard numerical method

m by m array of square blocks.

N abscissas per interface.

Assume spacing between abscissas
and nodes is equal.

Ax=Db

Finite volume method: @ === Ye o s o e
Dimension of x: m2NZ2.

Semi-analytical method:
Dimension of x: 22N +1). = Yo s s e ele oo o olooeceeleosos

> > >
> > >
» » »
> » >
» » »
> > >
> > »
> > >
> > »
. > > »
Linear system: ~ jeee—e-e [ oo (oo oo [
» » »
> > >
> » >
» » »
» > >
» > »
> » >
> > »
» » »

Figure 1: Abscissas (4 X 4 array of blocks).
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Linear system dimension

Comparison to a standard numerical method

m by m array of square blocks.

® © 0 00 06000000000 00 0 0 00
® © 00000000 00000 00 0 0 0 0

® 00 0 0

N abscissas per interface.

Assume spacing between abscissas
and nodes is equal.

Linear system:

Ax=Db

Finite volume method:
Dimension of x: m2NZ2.

Semi-analytical method:
Dimension of x: m?(2N + 1).

® © 0000060060 00000 900 0 0 9
® © 0 00 00000 00000 00 0 0 00
® © 00000000 00000 00 0 0 0 0

Figure 2: Nodes (4 X 4 array of blocks).
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Results

Comparison to standard numerical method

Standard test case (Szymkiewicz, 2013): 4 x 4 array of blocks.
Diffusivity: 1.0 [l 0.1

Dr Elliot Carr https://elliotcarr.github.io/ 28/31
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Results

Comparison to standard numerical method

Semi-Analytical Finite Volume
N | |(Det = Deg)./ De| | Runtime (s) | |(Detr — Des)./ D.#| | Runtime (s)
v | (Sois Sarea) | oo | (3D S0) | oov
5 | [321es toses] | 0010 | ({Rees ansea) | 0027
16| (lmes soes) | % |oes 1ases) | 0112
w2 | (et ) | 00 | (e o) | 05
o | (oot o) | o | [Pt )| 2o

Beff: Approximate Deg (semi-analytical or finite volume method)
Des: Benchmark D¢ using finite volume method with a very fine grid.
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Results

Application to complex geometries

50 x 50 100 x 100

D.. [ 0340  0.000954
f = 10.000954  0.304

D (0310 0.0177
ff =10.0177 0.342

Diffusivity: 1.0 [l 0.1
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Summary and Future work

March, Carr and Turner (2019)

Semi-analytical method for solving boundary value problems on block locally-isotropic
heterogenous media.

Method provides explicit formula for effective diffusivity Deg for highly complex het-
erogeneous media.

While achieving equivalent accuracy, semi-analytical method is faster than a standard
finite volume method for the test problems we considered.

Improved efficiency due to the much smaller linear system.
Potential to significantly speed up coarse-scale simulations of heterogeneous diffusion

(e.g. groundwater flow, heat conduction in composite materials, etc).

https://arxiv.org/abs/1812.06680 https://github.com/NathanMarch/Homogenization
Semi-analytical solution of the homogenization boundary value problem for block
locally-isotropic heterogeneous media

Nathan G. March®*, Elliot J. Carr®, lan W. Turner®

aSchool of Math ical Sciences, Q land University of Technology (QDT) Brisbane, Australia.
YARC Centre of Excell for Math l and St I Frontiers (ACEMS), Q d University of Tech y (QUT), Brisbane,
Australia.
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Coarse-scale simulations

Preliminary results

Preliminary investigation into effect of coarse-graining.

Diffusivity field

Solution at t = 0.1

Benchmark/Target solution field.

Fine-scale equation:
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Coarse-scale simulations

Preliminary results

Preliminary investigation into effect of coarse-graining.

Diffusivity field Solution att = 0.1

Homogenization blocks of size 2 X 2. Diffusivity: 1.0 - 0.1

Coarse-scale equation: %—I;I + V- (=Degr(x)VU) = 0.
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Coarse-scale simulations

Preliminary results

Preliminary investigation into effect of coarse-graining.

Diffusivity field Solution at t = 0.1

Homogenization blocks of size 4 x 4. Diffusivity: 1.0 - 0.1

Coarse-scale equation: %—I;I + V- (=Degr(x)VU) = 0.

Dr Elliot Carr https://elliotcarr.github.io Extra Slides



Coarse-scale simulations

Preliminary results

Preliminary investigation into effect of coarse-graining.

Diffusivity field Solution at t = 0.1

Homogenization blocks of size 10 X 10. Diffusivity: 1.0 - 0.1

Coarse-scale equation: %—I;I + V- (=Degr(x)VU) = 0.
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Coarse-scale simulations

Preliminary results

Preliminary investigation into effect of coarse-graining.

Diffusivity field Solution at t = 0.1

Homogenization blocks of size 12 X 12. Diffusivity: 1.0 - 0.1

Coarse-scale equation: %—I;I + V- (=Degr(x)VU) = 0.

Dr Elliot Carr https://elliotcarr.github.io Extra Slides



Coarse-scale simulations

Preliminary results

Preliminary investigation into effect of coarse-graining on hydraulic head fields

Diffusivity field

Solution at t = 0.1

Completely homogenized.

d
Coarse-scale equation: ou + V- (=DegVU) = 0.
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