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Earlywood Tracheid1 Electron Microscope Image
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Transport equations

Mesoscopic Drying Model: TransPore (State Variables: X, T and ρa = εgρa)2

• Liquid conservation

∂

∂t

(

ρ0(x)X + εgρv

)

+ ∇ ·

(

ρwvw + ρvvg + ρbvb

)

= ∇ ·

(

ρgDeff∇ωv

)

• Air conservation

∂

∂t

(

εgρa

)

+ ∇ ·

(

ρavg

)

= ∇ ·

(

ρgDeff∇ωa

)

Representative Elementary Volume

• Energy conservation

∂

∂t

(

ρ0(x)
(

Xhw + hs

)

+ εg
(

ρvhv + ρaha

)

−

∫

ρb

0

∆hw dρ − εgPg

)

+∇ ·

(

ρwhwvw +
(

ρvhv + ρaha

)

vg + hbρ0Db∇Xb

)

= ∇ ·

(

ρgDeff

(

hv∇ωv + hv∇ωa

)

+ Keff∇T
)

2Perré, P. and I. Turner (2002)
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Mesh generation

Geometric description of Porous Medium - MeshPore
3,

Boards

3Perré, P. (2005)
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Spatial discretisation

Control-Volume Finite-Element (CV-FE)
method

bc

bc

bc

bc

bc

bc

bc

p

Finite
Element

Control
Volume

Boundary

Sub-control
Volume

n

n

Conservation equation

Liquid, Air and Energy conservation laws:

∂ψ

∂t
+ ∇ · q = 0

Triangular Mesh

Control Volume Mesh

Discrete conservation equations

For each control volume p in the mesh:

dψp

dt
+

1

Vp

Nfp
∑

j=1

(q · n)jAj ≈ 0, with Nfp boundary faces.
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Time integration

Jacobian-free Exponential Euler Method (EEM)
Advancement of drying system achieved using second-order accurate time-stepping
formula4:

du

dt
= g(u); u(0) = u0

du

dt
≈ g(un) + J(un)(u− un)

un+1 ≈ un + J(un)−1(eδtJ(un)
− I)g(un)

• Krylov subspace methods4 used to
effectively approximate the
matrix-function vector product:

ϕ(A)b = A−1(eA
− I)b; A ∈ R

N×N

• Our implementation5 results in a
speed-up of between 20%-40% on
classical Newton approaches

No need to form J

4Hochbruck et al. (1998)
5Carr, Moroney and Turner (submitted to Applied Mathematics and Computation)
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Low temperature drying

Temperature (Initial) 30 (◦C)
Temperature (Wet-bulb) 45 (◦C)
Temperature (Dry-bulb) 60 (◦C)
Average Moisture (Initial) 170 (%)
Air velocity 2 (ms−1)
Heat transfer coefficient 15 (Wm−2K−1)
Mass transfer coefficient 0.015 (ms−1)
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Formulation

Existing formulation of TransPore

Interpolate at each node in the mesh
using a area-weighted average of the
NSCVp surrounding densities:

ρ0(xp) =

NSCVp
∑

i=1
ρ
(i)
0 V

(i)
p

NSCVp
∑

i=1
V

(i)
p

bc

bc

bc

bc

bc

bc

bc

p

Sub-control volume

(V
(i)
p , S

(i)
w , ρ

(i)
0 )

Mass-conservative formulation

Partition the moisture content across the sub-control volumes (Xp > Xfsp):

Pc(ρ
(i)
0 , S

(i)
w , Tp) = P eqm

c ;

NSCVp
∑

i=1
ρwφ(i)S

(i)
w V

(i)
p

NSCVp
∑

i=1
ρ
(i)
0 V

(i)
p

= Xp − Xfsp

Ensures calibration of the driving forces, Pw and Pg, within each control volume.
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Summary

Two improvements to the mesoscopic modelling approach:

1. Jacobian-free Exponential Euler Method

• Avoids forming the Jacobian

• Results in a 20%-40% improvement in simulation times

2. Mass-conservative formulation

• Better accounted for the rapid spatial variation within a growth ring

• Allows for higher moisture peaks in earlywood and lower moisture
zones in latewood to be correctly captured

• Relaxes the requirement of using a very fine mesh as previously
reported for the mesoscopic modelling approach6

6P. Perré and I. W. Turner (2008)
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