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Groundwater modelling

Significance and motivation

Groundwater refers to water present in the pore space of soils in aquifers
located below the Earth’s surface.

Groundwater is a major source of the world’s freshwater supply and in many
regional areas of Australia constitutes the only available supply of freshwater.

Groundwater supplies are susceptible to problems such as over-withdrawal
causing the water levels to dip below the reach of existing wells and contam-
ination from pollutants emanating from the ground surface (e.g. hazardous
industrial waste, garbage landfills, pesticides applied to crops).

Mathematical and computational modelling provides valuable insight to in-
form decisions regarding the management of groundwater resources.

Mathematical and computational challenges of groundwater modelling in-
clude having to deal with a highly heterogeneous geological structure.
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Groundwater modelling

Mathematical model

I will focus on flow in the saturated zone.

Groundwater flow equation (MODFLOW, Harbaugh (2005)):

oh d oh d oh
S50 = 5 (Kx(x)g) oy (Ky(x)a—y),

where &1 is the dependent variable, x and ¢ are independent variables, K, and
K, are hydraulic conductivities and S; is the specific storage.

Variable of interest: hydraulic head field h(x,t), which determines where
groundwater will flow.

In this talk, I will make the simplifying assumption that the heterogeneous
medium is locally isotropic:

Ki(x) = K, (x) = K(x).
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Homogenization

Introduction

Fine-scale equation:

% +V.-(-DX)Vh) =0, xeQcCR>

If the scale at which D(x) = K(x)/S, changes is small compared to the size of the
domain Q, then computational resources required to resolve the fine-scale are
prohibitive due to the very fine mesh required to capture the heterogeneity.

This can be overcome by homogenizing or partially-homogenizing the het-
erogeneous medium.

Coarse-scale equation:

3(9_1;1 +V-(-Dg(x)VH) =0, x€QcCRR?

where H(x, t) is a smoothed/coarse-scale approximation to the fine-scale field
h(x, t) and Dg(x) is a slowly varying effective diffusivity.
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Groundwater modelling
Aquifer system

Homogenization cell (V')
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Effective Diffusivity

Homogenization of a cell Y = [0, L]?

Cell problem for first column of Do (Hornung, 1997):
V- D@V@W+x)=0, x=(x1y)eY=[0L]

Y(x) is periodic with period Y, % f pdV =0,
Y

1
Deg(:, 1) = ﬁ ﬁD(x)V (lp + X) dv.
Cell problem for second column of D¢ (Hornung, 1997):
V- D@V@W+y)=0, x=(x,y)eY=[0LP
Y(x) is periodic with period Y, % f PpdV =0,
Y
1
Dis(:,2) = 75 fy D)V (¢ +y) dV.

Definitions involving non-periodic boundary conditions also exist (e.g. con-
fined or uniform boundary conditions).
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Effective Diffusivity

Solution of cell problems

For a layered medium, the cell prob-
lems can be solved exactly:

D, 0
Dess = [ 0 Dh] ,

where D, and Dy, are the arithmetic
and harmonic means:
Dy + Dg 2D4Dpg

D,=A"=8 p, =45
2 "T D, +Dy

For complex geometries, numerical methods are required (Carr and Turner,
2014; Rupp et al., 2018; Szymkiewicz and Lewandowska, 2006).

The goal of this work is to develop a semi-analytical method for solving the
cell problems and computing Deg.
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Semi-analytical solution

Block heterogeneous medium

Complex heterogenous geometries can be represented as an array of blocks.

Consider the Y = [0, L]* consisting of an m? grid of rectangular blocks:

0

Dy 1 Dy 2 Dim
Y1
D> D3 Dam
) Y2
Ym—1
D1 | Dm,2 Do im0
L
0 —

Each block is isotropic with its own diffusivity value.

Consider the cell problem for Deg(:, 1) (second column follows similarly)...
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Semi-analytical solution

Homogenization problem

Cell problem becomes: 0

P11 P12 PV1,m

0=V- (D,',]‘V(I’[Ji,]' + JC)), Y1

where D;; is the diffusivity in the Y21 | Y22 e
(i, j)th block (row i, column j). vz
Solution and the flux are continuous i
at each interface: "

Ym,1 | Ym,2 WYm,m
e Horizontal interfaces: Ly 1 Ty Tmo1 L

i i,

Yij = Pin,j, Di,ja_y = Di+1,17-

e Vertical interfaces:

;i ;i
Yij = Pija, Di,j(% + 1) =Dijjn (% + 1)~
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Semi-analytical solution

Change of variable: v;; = ¥;; + x

0
Cell problem becomes:
V1,1 v1,2 Vi,m
2
A% 0ij = 0, Y1
where D;; is the diffusivity in the el | oA oz
(i, j)th block (row i, column j). vz
Solution and the flux are continuous y
. m—1
at each interface:
Um,1 Um,2 Um,m
. . L
e Horizontal interfaces: 0 e Tz Tm-1 L
avi,j avm,,‘
Uij = Uisl,j, Di,]’@ = i+1,jW~
e Vertical interfaces:
Jv;,j 90 j11
vij =Vijet,  Dij— == Dinj— —.
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Semi-analytical solution

Reformulation

Introduce unknown functions for the diffusive fluxes at interfaces between

adjacent blocks:
0 | |
v,
: : Dy = qi-nm+i(x)
| |
Yi—1p - - - - Im——— = — - - — - — = = —
I ] 3 &
Vi £ %3
vi I I T ]
(2 il s Bt v 2, —
o —> = vg-0 =
| | =
| | ‘? = i
I l %l: E
1 1 S <
| |
| | a'l),//
L : ! Dij524 = q(-tm+ir1(x)
0 Tj_1 T L v
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Semi-analytical solution

Solution on individual block (Polyanin, 2002)

Solution on each block:

‘s = _ai'i — x.)? M )2 110 _ 2 2
00 ) = =)+ =g = ey =)+ g =)
> i [ kmt(x — x;j kre(y — vy
—h; % cosh il /)]cos[ n(y Y 1)]
= Vijk i h;

‘ - bijk o kﬂ(X—xj—l) Cos[kﬂ(y;yu)]

[ kr(y — y,»)] cos [kn(x - xj_l)]
1.

Hijk L

i [kr(y — y;- kr(x — x;i_
+1; Z —]C sh Y ~ yi1) cos e~ %) +K;;,
wige L lj !

where y; jx = knt smh — and Uijk = krsinh k"h’ Jhi=yi—yiqandl; = x;—x.
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Semi-analytical solution

Coefficients

Coefficients are integrals of unknown flux functions, e.g.

2 (Y g+ (y) kﬂ(y—yu)) dy.

ai,j,k = — cos
hi Vi1 Di, ( hi

We approximate these integrals numerically using a midpoint rule, e.g.

N
2 kn(y, = yi1)
Qi jk = _Di/jhi ; Wp8(i-1yn+j(Yp) COS (—hi ,

where N is the number of abscissas per interface and w, and y, are the appro-
priate weights and abscissas.

Quadrature approximation requires the evaluations of the unknown interface
functions at the abscissas, e.g. gi-1)u+j(yy)-

By determining these evaluations, we can compute the coefficients (e.g. a; ;)
and thus compute the effective diffusivity.
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Semi-analytical solution

Determining evaluations of the unknown interface functions

Enforce continuity of the solution at the abscissas along each interface, e.g.

is1,j(Xp, ¥i) — 0;j(xp, ¥;)) = 0 (horizontal interface).

This yields a system of linear equations that can be solved for the evaluations
of the unknown interface functions:

Ax =D,

where x is a vector of dimension m?(N +1) containing the required evaluations.

As we have an analytical expression for the solution of the interface functions,
the entries of D can be expressed in terms of the coefficients, e.g.

l] arjO + bl]O) - (Ci,j,k - di,j,k)[l - (_1)k]
De(1,1) = Iz Z Z +h Z kn !

i=1 j=1 k=1

where A;; = ;h; is the area of the (i, j)th block.
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Linear system dimension

Comparison to a standard numerical method

m by m array of square blocks. ~  jeeeeere e oo oo oo o oo oo o

N abscissas per interface.

Assume spacing between abscis-
sas and nodes is equal.

Linear system:

Ax=Db

Finite volume method:
Dimension of x: m2N?2.

Semi-analytical method:
Dimension of x: m?(2N + 1).

Figure 1: Abscissas (4 X 4 array of blocks).
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Linear system dimension

Comparison to a standard numerical method

m by m array of square blocks. * oo 000000090000
e ® 0 00 060 0 0 0 0 o @

. . L ® 0 0000600 0 00 L

N abscissas per interface. ! ceceseccese o q
L ® 0 00 000 0 00 L

Assume spacing between abscis- : :::f', : : :: l : . :,
sas and nodes is equal. [ 000000000000 0
L ® © 0 0000000 0 0 0 0 ¢

. [ ® © 0 00 06000 0 0 0 0 039
Lmearsystem: < oo 0600000000000
® 0 0 0 0 06000 90 0 0 0 0 9

Ax=b ] ceeeleceelenesl

L ® 0 00000000 0 0 0 0 ¢

Finite volume method: b SO0 00 SOSE
® © 0 00 06000 0 0 0 0 039

Dimensionofx: m2N2. L 000000000 o q
L ® © 0090000 0 9 00 o9

Semi-analytical method: ‘ ;;;; ';;;: [ : ; o ;'

Dimension of x: m?(2N + 1).
Figure 2: Nodes (4 x 4 array of blocks).
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Results

Comparison to standard numerical method

Standard test case (Szymkiewicz, 2013): 4 x 4 array of blocks.
Diffusivity: 1.0 [l 0.1.
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Results

Comparison to standard numerical method

Semi-Analytical Finite Volume
N |(Deff_69ff)./Deff| Runtime (s) I(Deff—ﬁeff)./Deff| Runtime (s)
e I e T
8 | ooed Toaca) | oows | (1hed 1) oo
o] (13 o) | 0wt | res) | oms
2| (yosea sased) | 092 | (S76eq sopes) | 05
o | [350es 27es) | 070 | (Tooes 13%04) | 2%

]5eff: Approximate D,y (semi-analytical or finite volume method)
D.s: Benchmark D using finite volume method with a very fine grid.
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Results

Application to complex geometries

50 x 50 100 x 100

D.. [ 0340  0.000954
f = 10.000954  0.304

D (0310 0.0177
ff =10.0177 0.342

Diffusivity: 1.0 [l 0.1
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Results

Application to pixellated irregular geometries

Actual geometry

Pixellated (128 x 128)

0.4796 —0.0172

Dest = (—0.0172 0.4370

Runtime = 311 secs
[Des—D" || =9.0x10*

| |max
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Results

Application to pixellated irregular geometries

Actual geometry

Pixellated (64 x 64)

0.4796 —0.0172

Dest = (—0.0172 0.4370

Runtime = 12 secs

[Des-D" || =2.9x1073

| |max
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Results

Application to pixellated irregular geometries

Actual geometry

Pixellated (32 x 32)

0.4796 —0.0172

Dest = (—0.0172 0.4370

Runtime = 1sec

[Des—D" || =53x103

| |max
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Results

Application to pixellated irregular geometries

Actual geometry

Pixellated (16 x 16)

0.4796 —0.0172

Dest = (—0.0172 0.4370

Runtime = 0.1 sec

[Der=D" || =1.0x102

| |max
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Results

Application to pixellated irregular geometries

Actual geometry

Pixellated (8 x 8)

0.4796 —0.0172

Dest = (—0.0172 0.4370

Runtime = 0.01 sec

[Der—D" || =4.4x1072

| |max
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Groundwater modelling

Coarse-scale modelling

Homogenization cell (V')
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Coarse-scale simulations

Preliminary results

Preliminary investigation into effect of coarse-graining on hydraulic head fields

Diffusivity field Solution at t = 0.1

Benchmark/Target solution field. Diffusivity: 1.0 - 0.1
Fine-scale equation: % + V- (-D(x)Vh) = 0.
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Coarse-scale simulations

Preliminary results

Preliminary investigation into effect of coarse-graining on hydraulic head fields

Diffusivity field Solution at t = 0.1

Homogenization blocks of size 2 X 2. Diffusivity: 1.0 - 0.1
JH
Coarse-scale equation: o + V- (-Deg(x)VH) = 0.
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Coarse-scale simulations

Preliminary results

Preliminary investigation into effect of coarse-graining on hydraulic head fields

Diffusivity field Solution at t = 0.1

Homogenization blocks of size 4 X 4. Diffusivity: 1.0 - 0.1
JH
Coarse-scale equation: o + V- (-Deg(x)VH) = 0.
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Coarse-scale simulations

Preliminary results

Preliminary investigation into effect of coarse-graining on hydraulic head fields

Diffusivity field Solution at t = 0.1

Homogenization blocks of size 10 X 10. Diffusivity: 1.0 - 0.1
JH
Coarse-scale equation: o + V- (-Deg(x)VH) = 0.
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Coarse-scale simulations

Preliminary results

Preliminary investigation into effect of coarse-graining on hydraulic head fields

Diffusivity field Solution at t = 0.1

Homogenization blocks of size 12 X 12. Diffusivity: 1.0 - 0.1
JH
Coarse-scale equation: o + V- (-Deg(x)VH) = 0.
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Coarse-scale simulations

Preliminary results

Preliminary investigation into effect of coarse-graining on hydraulic head fields

Diffusivity field Solution at t = 0.1

Completely homogenized. Diffusivity: 1.0 - 0.1

JH
Coarse-scale equation: o + V- (=D¢VH) = 0.

Dr Elliot Carr https://elliotcarr.github.io/ 22/24


https://elliotcarr.github.io/

Full details

March, Carr and Turner (2019)

Preprint available on the arXiv repository:
https://arxiv.org/abs/1812.06680.

Semi-analytical solution of the homogenization boundary value problem for block
locally-isotropic heterogeneous media

Nathan G. March®*, Elliot J. Carr®, Tan W. Turner®®

aSchool of Math Sciences, Queensland University of Technology (QUT), Brisbane, Australia.
YARC Centre of Excellence for Math I and Statistical Frontiers (ACEMS), Queensland University of Tech (QUT), Brisbane,
Australia.
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Summary and Future work

March, Carr and Turner (2019)

New semi-analytical method for solving boundary value problems on block
locally-isotropic heterogenous media.

Method provides explicit formula for effective diffusivity Des for highly com-
plex heterogeneous media.

While achieving equivalent accuracy, semi-analytical method is faster than a
standard finite volume method for the test problems we considered.

Improved efficiency due to the much smaller linear system.

Potential to significantly speed up coarse-scale simulations of heterogeneous
flows (e.g. groundwater flow, heat conduction in composite materials, etc).
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