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Definition of response time
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I One-dimensional linearised Dupuit-Forchheimer model of saturated flow [?]:

S
∂h
∂t

=
∂
∂x

(
K(x)h

∂h
∂x

)
+ R(x), 0 < x < L, t > 0,

h(x, 0) = h0(x), h(0, t) = h1,
∂h
∂x

(L, t) = 0.

I Nomenclature:
h(x, t): saturated thickness [L]

K(x): saturated hydraulic conductivity [LT−1]
R(x): recharge rate [LT−1]

S: storage coefficient [−]

I Definition of response time, tr:

h(x, tr) − h∞(x)
h0(x) − h∞(x)

= δ,

where δ is a small prescribed tolerance (e.g. δ = 10−p).
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Concept of mean action time
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I Transition can be represented as a CDF:

F(t; x) := 1 −
h(x, t) − h∞(x)
h0(x) − h∞(x)

.

I Mean action time (MAT): common measure of the time required to reach steady state []:

MAT(x) :=
∫
∞

0
t f (t; x) dt; f (t; x) =

∂F
∂t

(t; x).

I Variance of action time (VAT) [m (i)]:

VAT(x) :=
∫
∞

0
t2 f (t; x) dt −

[∫
∞

0
t f (t; x) dt

]2

.

I Response time approximations [m (i)]:

tr ≈MAT(L), tr ≈MAT(L) +
√

VAT(L).



Computing the moments
Moments satisfy boundary value problems
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I Definition of kth raw moment:

Mk(x) =

∫
∞

0
tk f (t; x) dt,

f (t; x) =
1

h∞(x) − h0(x)
∂
∂t

[h(x, t) − h∞(x)] .

I Boundary value problem for scaled moment Mk(x) = Mk(x)(h∞(x) − h0(x)) [?]:

d
dx

(
D(x)

dMk

dx

)
= −kMk−1(x), 0 < x < L,

Mk(0) = 0,
dMk

dx
(L) = 0.

where D(x) = hK(x)/S.

I Recursively solve boundary value problems. Starting with k = 1 and given M0(x) =
h∞(x) − h0(x). Repeat until a desired order.
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I At each location x, transient solution takes the form:

h(x, t) = h∞(x) +

N∑
n=1

cne−tβn .

I Follows that:

h(x, t) − h∞(x)
h0(x) − h∞(x)

=

N∑
n=1

αne−tβn ' α1e−tβ1 , for large t.

I Asymptotic estimate of response time:

h(x, tr) − h∞(x)
h0(x) − h∞(x)

= δ ⇒ α1e−trβ1 ' δ ⇒ tr '
1
β1

log
(
α1

δ

)
,

where δ is a small prescribed tolerance (e.g. δ = 10−p).
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I Asymptotic relation:

Mk(x) ' k!
α1

βk
1

for large k.

I Matching consecutive moments:

(k − 1)!
α1

βk−1
1

'Mk−1(x)

k!
α1

βk
1

'Mk(x)
⇒

α1 '
Mk(x)

k!

(
kMk−1(x)

Mk(x)

)k

β1 '
kMk−1(x)

Mk(x)
.

I Asymptotic estimate of release time:

tr '
Mk(x)

kMk−1(x)
log

Mk(x)
k! δ

(
kMk−1(x)

Mk(x)

)k for large k.

I No need for transient solution ci(r, t)!
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Insights for homogeneous flow
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I Consider the homogeneous version of the model:

∂h
∂t

=
∂
∂x

(
D
∂h
∂x

)
+ W, 0 < x < L, t > 0,

h(x, 0) = h1, h(0, t) = h1,
∂h
∂x

(L, t) = 0.

where D = hK/S and W = R/S.

I At x = L, the first four moments are given by:

M0(L) =
1
1

L0

D0 , M1(L) =
5

12
L2

D
, M2(L) =

61
180

L4

D2 , M3(L) =
1385
3360

L6

D3 .

I In general, we have:

Mk(L) =
Ek+2

(2k + 2)!/(2k!)
L2k

Dk
,

where Ei denotes the ith Euler number (https://oeis.org/A000364).

https://oeis.org/A000364
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I Recall, the asymptotic estimate of release time:

tr '
Mk(x)

kMk−1(x)
log

Mk(x)
k! δ

(
kMk−1(x)

Mk(x)

)k for large k.

I For large k, there is an approximation for the Euler numbers [?]

Mk(L) =
Ek+2

(2k + 2)!/(2k!)
L2k

Dk
'

4k+2(2k + 2)!
(2k + 2)!/(2k!)π2k+3

L2k

Dk
'

k!
2

4k+2

π2k+3

L2k

Dk
for large k.

I Asymptotic estimate of release time:

tr '
4
π2

L2

D
loge

( 32
π3δ

)
.

I This is precisely the value of tr that would be obtained from taking the first term in the
Fourier series solution.



Results for Homogeneous flow
Laboratory-scale aquifer model
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Figure 2: m (i)
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k tr δr |δr − δ|
1 44.5556 0.01 9.3e-04
2 43.7157 0.01 8.5e-05
3 43.6410 0.01 6.0e-06
4 43.6356 0.01 2.3e-07
5 43.6353 0.01 2.4e-08
6 43.6354 0.01 8.3e-09
7 43.6354 0.01 1.5e-09
8 43.6354 0.01 2.4e-10
9 43.6354 0.01 3.4e-11

10 43.6354 0.01 4.7e-12

Table 1: ? [δ = 10−2]

δr =
h(L, tr) − h∞(L)
h0(L) − h∞(L)

; tr '
Mk(x)

kMk−1(x)
log

Mk(x)
k! δ

(
kMk−1(x)

Mk(x)

)k.
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K(x) = 81.0707 + 64
[
e−0.1(x−50/3)2

− e−0.1(x−100/3)2 ]
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Figure 4: ?
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k tr δr |δr − δ|
1 39.7338 0.01 1.3e-03
2 38.7041 0.01 1.6e-04
3 38.5858 0.01 1.5e-05
4 38.5743 0.01 7.2e-07
5 38.5736 0.01 1.3e-07
6 38.5737 0.01 5.6e-08
7 38.5737 0.01 1.4e-08
8 38.5737 0.01 3.0e-09
9 38.5737 0.01 6.0e-10
10 38.5737 0.01 1.1e-10

Table 2: ? [δ = 10−2]

δr =
h(L, tr) − h∞(L)
h0(L) − h∞(L)

; tr '
Mk(x)

kMk−1(x)
log

Mk(x)
k! δ

(
kMk−1(x)

Mk(x)

)k.
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Summary

I Extended the mean action time concept.

I New method for calculating response times using higher-order moments.

I New estimate is significantly more accurate than existing estimates based on low-order
moments.

Extensions

I Techniques presented carry over to two and three dimensional problems.

I Nonlinear problems?
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a b s t r a c t

We study measures of the amount of time required for transient flow in heterogeneous porous media to
effectively reach steady state, also known as the response time. Here, we develop a new approach that
extends the concept of mean action time. Previous applications of the theory of mean action time to esti-
mate the response time use the first two central moments of the probability density function associated
with the transition from the initial condition, at t = 0, to the steady state condition that arises in the long
time limit, as t ! 1. This previous approach leads to a computationally convenient estimation of the
response time, but the accuracy can be poor. Here, we outline a powerful extension using the first k
raw moments, showing how to produce an extremely accurate estimate by making use of asymptotic
properties of the cumulative distribution function. Results are validated using an existing laboratory-
scale data set describing flow in a homogeneous porous medium. In addition, we demonstrate how the
results also apply to flow in heterogeneous porous media. Overall, the new method is: (i) extremely accu-
rate; and (ii) computationally inexpensive. In fact, the computational cost of the new method is orders of
magnitude less than the computational effort required to study the response time by solving the tran-
sient flow equation. Furthermore, the approach provides a rigorous mathematical connection with the
heuristic argument that the response time for flow in a homogeneous porous medium is proportional
to L2=D, where L is a relevant length scale, and D is the aquifer diffusivity. Here, we extend such heuristic
arguments by providing a clear mathematical definition of the proportionality constant.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Transient, or time dependent groundwater flow conditions are
more complicated than steady state groundwater flow conditions
(Bear, 1972, 1979). The physical differences in complexity are
echoed in the differences between mathematical models of tran-
sient groundwater flow and mathematical models of steady state
groundwater flow, with the latter simpler to solve than the former
(Anderson, 2007; Haitjema, 1995; Wang and Anderson, 1983). This
is because steady state groundwater flow models are elliptic par-
tial differential equations that do not involve the specification of
the initial condition or storage parameter. In contrast, transient
groundwater flow models are parabolic partial differential equa-
tions that require the specification of both the initial condition
and the storage parameter associated with the porous material.
Since steady state flow conditions arise as the long time limit of
a transient flow response (Haitjema, 1995), is it natural for us to

determine an estimate of the amount of time required for a tran-
sient response to occur, after which steady state conditions will
prevail and simpler steady models can be used to describe the flow
process. Such a time scale is often referred to as a response time
(Bredehoeft and Durbin, 2009; Currell et al., 2016; Haitjema, 2006).

In the groundwater modelling literature there are two main
techniques used to calculate the response time. In the first
approach, both the transient groundwater flow model and the
steady state groundwater flowmodels are solved, and the response
time is taken to be the amount of time taken for the difference
between the transient solution and the associated steady state
solution to fall below some sufficiently small tolerance
(Rousseau-Gueutin et al., 2013; Lu et al., 2013; Watson et al.,
2010). In the second method a simple scaling approach is adopted
whereby if groundwater flow takes place in a confined aquifer with
aquifer diffusivity D, then the response time is proportional to
L2=D, where L is a relevant length scale (Bredehoeft and Durbin,
2009; Currell et al., 2016; Haitjema, 2006). Both of these methods
suffer from certain limitations. For example, the first method relies
on solving both the steady state and transient flow problem of
interest. We note that if the transient solution is used to study

https://doi.org/10.1016/j.jhydrol.2017.12.023
0022-1694/� 2017 Elsevier B.V. All rights reserved.
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