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Groundwater aquifer

Concept of response time
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Groundwater model

Definition of response time

One-dimensional linearised Dupuit-Forchheimer model of saturated flow [?]:

oh d —dh
SE = g(K(x)h£)+R(x), 0<x<L, t>0,

h(x,0) = ho(x), h(0,t) = hy, %(L, t)=0.

Nomenclature:
h(x,t):  saturated thickness [L]
K(x): saturated hydraulic conductivity [LT™']
R(x):  recharge rate [LT Y
S:  storage coefficient [—]

Definition of response time, f,:
h(x, ty) = hoo(x) _
ho(x) = heo(x)
where 6 is a small prescribed tolerance (e.g. 6 = 1077).

o,
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Response time approximations

Concept of mean action time

Transition can be represented as a CDF:

h(x, t) — hoo(x)

F(t;x):=1- —hg(x) Zho(0)

Mean action time (MAT): common measure of the time required to reach steady state []:
0 JF
MAT(x) := tf(t;x)dt;  f(tx) = E(t; X).
0

Variance of action time (VAT) [m (i)]:
2

VAT (x) := f ” tzf(t;x)dt—[ f ” tf(t;x)dt] )
0 0

Response time approximations [m (i)]:

t, ~ MAT(L), t ~ MAT(L) + \/VAT(L).
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Computing the moments

Moments satisfy boundary value problems

Definition of kth raw moment:

Mi(x) = j; h *F(tx) dt,

1 d

FEX) = 1 "ot 3t

[A(x, 1) = heo ()] -

Boundary value problem for scaled moment Mi(x) = Mi(x) (oo (x) = ig(x)) [2]:

d dMy\ —
a (D(X)W) = —kMk_l(X), 0<x<L,

0 =0 Mgy
M©0)=0, ~5(1)=0.

where D(x) = hK(x)/S.

Recursively solve boundary value problems. Starting with k = 1 and given Mo(x) =
heo(x) = ho(x). Repeat until a desired order.
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Calculating the release time

An asymptotic estimate based on the moments

At each location x, transient solution takes the form:

N
hx,t) = ho(0)+ Y cue™P.
n=1
Follows that:

N
Zane Br ~ gy, forlarge t.

n=

h(x, 1) — hoo(x)
To(x) = heo )

Asymptotic estimate of response time:

h(xr t) _hoo(x) _ —tB1 ~ ~ l ((1_1)
ol o) =5 = wme ~5 = B log ’

where 6 is a small prescribed tolerance (e.g. 6 = 1077).
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Calculating the release time

An asymptotic estimate based on the moments

Asymptotic relation:

M (x) = k!g—; for large k.

1

Matching consecutive moments:
(k=D = My ()
ﬁ 1

1
k% ~ My(x)
1

Asymptotic estimate of release time:

t =

B1

oy = M (kMk_l(x) )k

k!
_ kM)
M)

M (x)

T M 8| Tk

No need for transient solution ¢;(7, t)!
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Asymptotic estimate of release time

Insights for homogeneous flow

Consider the homogeneous version of the model:

oh d (_oh
E_$(D£)+W O<x<L, t>0,

oh
W, 0) =, hO,H=h, F-(LH=0.
where D = hK/S and W = R/S.

At x = L, the first four moments are given by:

11L0 5 L2 61 L* 1385 L6
)= -— L)= —— )= — — L)= —= —_.
Mo(L) 100/ My (L) 5D’ Ma(L) 180 D2’ M;3(L) 3360 D3
In general, we have:
Ek+2 sz

Mi(L) = 2k + 2)!/(2k!) Dk’

where E; denotes the ith Euler number (https://oeis.org/A000364).
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Asymptotic estimate of release time

Insights for homogeneous flow

Recall, the asymptotic estimate of release time:

t, =

~ 0
M1 (x) 8

My (x) ) My (%) (kMy_1(x)
k!'6 M (x)

k
) ] for large k.
For large k, there is an approximation for the Euler numbers [?]

ML) = Eiin L% 420k +2)l L% g2 [
WD) T 2k +2)1/Qkr2F3 DE 2 2k Dk

for large k.

= @k +2)/ 2K DF

Asymptotic estimate of release time:

LA (32
b= o)

This is precisely the value of ¢, that would be obtained from taking the first term in the
Fourier series solution.
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Results for Homogeneous flow

Laboratory-scale aquifer model

(a recharge (b)

A

no flow boundary

constant head boundary

x=0 [cm] x=50 [cm]

Figure 2: m (i)
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Results for Homogeneous flow

Comparison to experimental data
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Figure 3: 2 [6 = 1072]
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Results for Homogeneous flow

How many moments are required?

k L5 I, =0l

1 445556 0.01 9.3e-04

2 43.7157 0.01 8.5e-05

3 43.6410 0.01 6.0e-06

4 43.6356 0.01 2.3e-07

5 43.6353 0.01 2.4e-08

6 43.6354 0.01 8.3e-09

7 43.6354 0.01 1.5e-09

8 43.6354 0.01 2.4e-10

9 43.6354 0.01 3.4e-11

10 43.6354 0.01 4.7e-12

Table 1: ? [6 = 1072]
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Results for Heterogeneous flow

Spatially-dependent hydraulic conductivity

K(x) = 81.0707 + 64 [e"01G=50/3 _ ¢=0.1:-100/37]
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Figure 4: ?
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Results for Heterogeneous flow

Comparison to synthetic data
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Results for Heterogeneous flow

How many moments are required?

b O 16r =0
39.7338 0.01 1.3e-03
38.7041 0.01 1.6e-04
38.5858 0.01 1.5e-05
38.5743 0.01 7.2e-07
38.5736 0.01 1.3e-07
38.5737 0.01 5.6e-08
38.5737 0.01 1.4e-08
38.5737 0.01 3.0e-09
38.5737 0.01 6.0e-10
38.5737 0.01 1.1e-10

S0 0 N0 Ul W N A

Table 2: ? [6 = 1072]
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Conclusions and Summary

Summary
Extended the mean action time concept.
New method for calculating response times using higher-order moments.

New estimate is significantly more accurate than existing estimates based on low-order
moments.

Extensions

Techniques presented carry over to two and three dimensional problems.

Nonlinear problems?
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Further reading

Carr and Simpson (2018)
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ARTICLE INFO ABSTRACT
Artile istory: We study measures of the amount of time required for transient flow in heterogeneous porous media to
Received 12 July 2017 effectively reach steady state, also known as the response time. Here, we develop a new approach that
Received in revised form 5 December 2017 extends the concept of mean action time. Previous applications of the theory of mean action time to esti-
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mate the response time use the first two central moments of the probability density function associated
with the transition from the initial condition, at ¢ = 0, to the steady state condition that arises in the long

P. Kitanidis, Editor-in-Chief, with the time limit, as ¢ — x. This previous approach leads to a computationally convenient estimation of the
assistance of Adrian Deane Werner, response time, but the accuracy can be poor. Here, we outline a powerful extension using the first k
Associate Editor raw moments, showing how to produce an extremely accurate estimate by making use of asymptotic

properties of the cumulative distribution function. Results are validated using an existing laboratory-
Keywords scale data set describing flow in a homogeneous porous medium. In addition, we demonstrate how the
Groundwater results also apply to flow in heterogeneous porous media. Overall, the new method is: (i) extremely accu-
Response time rate; and (ii) computationally inexpensive. In fact, the computational cost of the new method is orders of
Transient magnitude less than the computational effort required to study the response time by solving the tran-
Steady state sient flow equation. Furthermore, the approach provides a rigorous mathematical connection with the

Mean action time heuristic argument that the response time for flow in a homogeneous porous medium is proportional
toL*/D, where Lis a relevant length scale, and D is the aquifer diffusivity. Here, we extend such heuristic
arguments by providing a clear mathematical definition of the proportionality constant.

© 2017 Elsevier BV. All rights reserved.
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