Multiscale computational modelling of gradient-driven transport in heterogeneous media

Dr Elliot Carr
(elliot.carr@qut.edu.au)

School of Mathematical Sciences
Queensland University of Technology
Joint work with...

Prof. Ian Turner

School of Mathematical Sciences
Queensland University of Technology

Prof. Patrick Perré

CentraleSupélec
Laboratory of Chemical Engineering and Materials
CentraleSupélec, France
Groundwater Flow

Aquifer scale (Macroscopic scale)

Continuum scale (Microscopic scale)

Richards’ Equation

\[\frac{\partial \theta}{\partial t} + \nabla \cdot [-K \left(\nabla h + \nabla z \right)] = Q \]

Conductivity \((K)\) varies across soil types.
Fine-scale model

- Gradient-driven transport:

\[
\frac{\partial \psi}{\partial t} + \nabla \cdot (-K \nabla u) = 0 \quad \text{in } \Omega
\]

where \(\psi \) and \(K \) are functions of \(u(x, t) \).

- Domain \(\Omega \) comprised of two sub-domains \(\Omega_a \) (connected) and \(\Omega_b \) (inclusions):

\[
K(u) = \begin{cases}
K_a(u) & \text{in } \Omega_a \\
K_b(u) & \text{in } \Omega_b
\end{cases}
\]

\[
\frac{\partial \psi_a}{\partial t} + \nabla \cdot (-K_a \nabla u_a) = 0 \quad \text{in } \Omega_a
\]

\[
\frac{\partial \psi_b}{\partial t} + \nabla \cdot (-K_b \nabla u_b) = 0 \quad \text{in } \Omega_b
\]

- Computational cost of direct numerical simulation is prohibitively expensive
Macroscopic averaging

Assumptions:

1. At each point \(x \in \Omega \), there exists a micro-cell \(C_x \).
2. We assume that \(C_{x,b} \) is entirely located in the interior of the micro-cell \(C_x \).
Macroscopic averaging
Whitaker (1998); Davit et al. (2013)

- Average over the micro-cell:
 \[
 \frac{1}{|C_x|} \int_{C_{x,a}} \frac{\partial \psi_a}{\partial t} dV + \frac{1}{|C_x|} \int_{C_{x,a}} (\nabla \cdot q_a) dV = 0
 \]

- Temporal averaging theorem:
 \[
 \frac{1}{|C_x|} \int_{C_{x,a}} \frac{\partial \psi_a}{\partial t} dV = \frac{|C_{x,a}|}{|C_x|} \frac{\partial}{\partial t} \left(\frac{1}{|C_{x,a}|} \int_{C_{x,a}} \psi_a dV \right)
 \]

- Spatial averaging theorem:
 \[
 \frac{1}{|C_x|} \int_{C_{x,a}} (\nabla \cdot q_a) dV = \nabla_x \cdot \left(\frac{1}{|C_x|} \int_{C_{x,a}} q_a dV \right) - \frac{1}{|C_x|} \int_{\Gamma_x} q_a \cdot n ds
 \]

- Macroscopic (averaged) equations:
 \[
 \varepsilon_a \frac{\partial \psi_a}{\partial t} + \nabla_x \cdot Q_a = S \quad \varepsilon_b \frac{\partial \psi_b}{\partial t} = -S
 \]
Classical Macroscopic Model
Renard and de Marsily (1997); Szymkiewicz and Lewandowska (2006); Davit et al. (2013)

Macroscopic Model:

\[
\frac{\partial}{\partial t} \left[\varepsilon_a \Psi_a + \varepsilon_b \Psi_b \right] + \nabla_x \cdot (-K_{\text{eff}} \nabla_x U) = 0
\]

where \(\Psi_a := \psi_a(U) \) and \(\Psi_b := \psi_b(U) \) and \(U \) is the macroscopic primary variable.

Effective conductivity:

\[
(K_{\text{eff}})_{:,j} = \frac{1}{|C_x|} \int_{C_x} K e_j \, dV + \frac{1}{|C_x|} \int_{C_x} K \nabla_y \chi_j \, dV
\]

where \(\chi_j \) is the solution of the periodic cell-problem on \(C_x \):

\[
\nabla_y \cdot (K \nabla_y (\chi_j + y_j)) = 0, \quad \text{on } C_x, \quad \text{subject to } \frac{1}{|C_x|} \int_{C_x} \chi_j \, dV = 0.
\]
Two-scale Model (Model 1)

Showalter (1997); Szymkiewicz and Lewandowska (2008); Carr and Turner (2014)

Macroscopic equation:
\[\varepsilon_a \frac{\partial \Psi_a}{\partial t} + \nabla_x \cdot (-K_{\text{eff}} \nabla_x U_a) = S, \quad x \in \Omega \]

Microscopic equation:
\[\frac{\partial \psi_b}{\partial t} + \nabla \cdot (-K_b \nabla u_b) = 0, \quad y \in C_{x,b} \]

Microscopic BC:
\[u_b = U_a, \quad y \in \Gamma_x \]

Source term:
\[S = -\frac{1}{|C_x|} \int_{\Gamma_x} q_b \cdot n \, ds \]
Two-scale Model (Model 2)
Carr et al. (2016)

Microscopic scale

Macroscopic scale

Macroscopic equation:
\[\varepsilon_a \frac{\partial \Psi_a}{\partial t} + \nabla_x \cdot \mathbf{Q}_a = S, \quad x \in \Omega \]

Microscopic equation:
\[\frac{\partial \psi}{\partial t} + \nabla \cdot (-K \nabla u) = 0, \quad y \in C_x \]

Macroscopic flux:
\[\mathbf{Q}_a = \frac{1}{|C_x|} \int_{C_x} \mathbf{q} \, dV \]

Microscopic BC:
\[u = U_a, \quad y \in \partial C_x \]

Source term:
\[S = -\frac{1}{|C_x|} \int_{\Gamma_x} \mathbf{q}_b \cdot \mathbf{n} \, ds \]
Spatial Discretisation (Model 1)
Carr and Turner (2014); Carr et al. (2016)
Spatial Discretisation (Model 2)
Carr et al. (2016)
Time discretisation (Model 1 and Model 2)
Carr et al. (2011, 2016); Carr and Turner (2014); Hochbruck et al. (1998)

- Spatial discretisation can be expressed in the form:
 \[
 \frac{du}{dt} = g(u), \quad u(0) = u_0
 \]
 where number of unknowns is very large.

- Exponential Euler method:
 \[
 u_{n+1} = u_n + \tau_n J_n^{-1} (e^{\tau_n J_n} - I) g_n
 \]

- Explicit scheme

- Krylov subspace methods for computing \(J_n^{-1} (e^{\tau_n J_n} - I) g_n \) converge rapidly without preconditioning, and require only matrix-vector products with \(J_n \):
 \[
 J_n v \approx \frac{g(u_n + \varepsilon v) - g(u_n)}{\varepsilon}, \quad \varepsilon \approx \sqrt{\varepsilon M} \| u_n \|_2
 \]
Test Case: Richards’ Equation
Carr et al. (2016)

\[q_a \cdot n = q \]

\[\frac{\partial \theta_a}{\partial t} + \nabla \cdot \left[-K_a(h_a) \left(\nabla h_a + \nabla z \right) \right] = 0 \quad \text{in } \Omega_a \]

\[\frac{\partial \theta_b}{\partial t} + \nabla \cdot \left[-K_b(h_b) \left(\nabla h_b + \nabla z \right) \right] = 0 \quad \text{in } \Omega_b \]

\[K_b/K_a = 10^{-3} \]
Test Case: Richards’ Equation
Carr et al. (2016)

$t = 25 \text{ hrs}$

Fine-scale

Macroscopic

Two-scale (Model 1)

Two-scale (Model 2)
Test Case: Richards’ Equation

Carr et al. (2016)

$t = 100$ hrs

Fine-scale

Macroscopic

Two-scale (Model 1)

Two-scale (Model 2)

[Runtime: 6 hrs]

[Runtime: 2 sec]

[Runtime: 14 sec]

[Runtime: 4 min]
Test Case: Richards’ Equation
Carr et al. (2016)

$t = 400 \text{ hrs}$

Fine-scale

Macroscopic

Two-scale (Model 1) [Runtime: 6 hrs]

Two-scale (Model 2) [Runtime: 2 sec]

[Runtime: 14 sec]

[Runtime: 4 min]
Test Case: Richards’ Equation
Carr et al. (2016)

\[t = 400 \text{ hrs} \]

Fine-scale

Macroscopic

Two-scale (Model 1)

Two-scale (Model 2)

[Runtime: 6 hrs]
[Runtime: 2 sec]
[Runtime: 14 sec]
[Runtime: 4 min]
Summary and Conclusions

- Presented a modified two-scale model for gradient-driven transport/flow problems in heterogeneous materials (Model 2)

- The novel approach avoids the need for an effective parameter in the macroscopic equation by computing the macroscopic flux as the average of the microscopic fluxes over the micro-cell.

- Numerical experiments demonstrated that both two-scale models (Model 1 and Model 2) produce numerical solutions that are in excellent agreement with the fine-scale model at a reduced computational cost.

- Model 1 requires less computational time

- Model 2 is more accurate and able to capture additional fine-scale features in the solution.
The extended distributed microstructure model for gradient-driven transport: A two-scale model for bypassing effective parameters

E.J. Carra,b,*, P. Perréb, I.W. Turnera,c

a School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
b LCPM, CentraleSupelec, Université Paris-Saclay, Chatenay-Malabry, France
c Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), Queensland University of Technology (QUT), Brisbane, Australia

\textbf{ARTICLE INFO}

\textbf{ABSTRACT}

Numerous problems involving gradient-driven transport processes—e.g., Fourier’s and Darcy’s law—in heterogeneous materials concern a physical domain that is much larger than the scale at which the coefficients vary spatially. To overcome the prohibitive computational cost associated with such problems, the well-established Distributed Microstructure Model (DMM) provides a two-scale description of the transport process that produces a computationally cheap approximation to the fine-scale solution. This is achieved via the introduction of sparsely distributed micro-cells that together resolve small patches of the fine-scale structure; a macroscopic equation with an effective coefficient describes the global transport and a microscopic equation governs the local transport within each micro-cell. In this paper, we propose a new formulation, the Extended Distributed Microstructure Model (EDMM), where the macroscopic flux is instead defined as the average of the microscopic fluxes within the micro-cells. This avoids the need for any effective parameters and more accurately accounts for a non-equilibrium field in the micro-cells. Another important contribution of the work is the presentation of a new and improved numerical scheme for performing the two-scale computations using control volume, Krylov subspace and parallel computing techniques. Numerical tests are carried out on two challenging test problems: heat conduction in a composite medium and unsaturated water flow in heterogeneous soils. The results indicate that while DMM is more efficient, EDMM is more accurate and is able to capture additional fine-scale features in the solution.

\textcopyright 2016 Elsevier Inc. All rights reserved.
Thank you!
References

