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R(x); D(x); v(x); —(x); ‚(x) =

8>><>>:
R1; D1; v1; —1; ‚1; 0 < x < ‘1;

R2; D2; v2; —2; ‚2; ‘1 < x < ‘2;

...
...

Rm; Dm; vm; —m; ‚m; ‘m−1 < x < L:

Layered media arise in natural environments such as stratified soils and manufactured
environments such as composite landfill liners.
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I Governing equations (Guerrero et al., 2013; van Genuchten and Alves, 1982):

Ri
@ci

@t
= Di

@2ci

@x2
− vi

@ci

@x
− —ici + ‚i ; i = 1; : : : ; m;

ci (x; 0) = fi ;

ci (‘i ; t) = ci+1(‘i ; t); „iDi
@ci

@x
(‘i ; t) = „i+1Di+1

@ci+1

@x
(‘i ; t);

where vi„i = vi+1„i+1.

I General boundary conditions:

a0c1(0; t)− b0
@c1

@x
(0; t) = g0(t); aLcm(L; t) + bL

@cm

@x
(L; t) = gL(t):
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I Classical eigenfunction expansion solution:

ci (x; t) =

∞X
n=1

anTn(t;–n)Xn(x ;–n):

I Eigenvalues (–n, n ∈ N+) identified by substituting eigenfunctions into the boundary
and interface conditions and enforcing a non-trivial solution.

I Yields a nonlinear transcendental equation for the eigenvalues:

f (–) = 0;

where f (–) := det(A(–)); A ∈ R2m×2m:

I For many layers (large m) evaluating f (–) is numerically unstable.

I Solutions tend to breakdown for m > 10 layers (Carr and Turner, 2016).

I Previous solutions given by Liu et al. (1998) (advection-diffusion only) and Guerrero
et al. (2013) (advection-diffusion-decay only) restricted to a moderate number of layers
and specific boundary conditions.

https://elliotcarr.github.io/


Advection-diffusion-reaction in layered media
Analytical solution via Laplace transform

Dr Elliot Carr https://elliotcarr.github.io/ 4/11

I Idea: reformulate the model into m isolated single layer problems (Carr and Turner,
2016; Rodrigo and Worthy, 2016; Zimmerman et al., 2016).

I Introduce unknown functions of time, gi (t) (i = 1; : : : ; m − 1), at the layer interfaces
(Carr and Turner, 2016; Rodrigo and Worthy, 2016):

gi (t) := „iDi
@ci

@x
(‘i ; t):

I Yields isolated single layer problems e.g. in the first layer:
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I Each problem coupled together by imposing continuity of concentration at the inter-
faces.
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I Solve and express the solution in terms of the unknown interface functions.

I Taking Laplace transforms yields boundary value problems e.g. in the first layer:

D1
d2C1

dx2
− v1

dC1

dx
− (—1 + R1s)C1 = −R1f1 −

‚1

s
;

a0C1(0; s)− b0
dC1

dx
(0; s) = G0(s);

„1D1
dC1

dx
(‘1; s) = G1(s);

where Ci (x; s) = L{ci (x; t)} denotes the Laplace transform of ci (x; t) with transfor-
mation variable s ∈ C and Gi (s) = L{gi (t)} for i = 1; : : : ; m − 1.

I Laplace transforms of the boundary functions:

G0(s) = L{g0(t)};
GL(s) = L{gL(t)};

are assumed to be able to be found analytically.
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I Boundary value problems: second-order constant-coefficient differential equations.

I Solving using standard techniques in the Laplace domain:

C1(x; s) = A1(x; s)G0(s) + B1(x; s)G1(s) + P1(x; s);

Ci (x; s) = Ai (x; s)Gi−1(s) + Bi (x; s)Gi (s) + Pi (x; s); i = 2; : : : ; m − 1;

Cm(x; s) = Am(x; s)Gm−1(s) + Bm(x; s)GL(s) + Pm(x; s);

where the functions Pi , Ai and Bi (i = 1; : : : ; m) are known functions.

I To determine G1(s); : : : ; Gm−1(s), the Laplace transformations of the unknown inter-
face functions g1(t); : : : ; gm−1(t), enforce

Ci (‘i ; s) = Ci+1(‘i ; s); i = 1; : : : ; m − 1:

I Yields a tridiagonal system of linear equations:

Ax = b;

where x = (G1(s); : : : ; Gm−1(s))T .

I Summary: Concentration can be evaluated at any x and s in the Laplace domain.
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I Inversion of the Laplace transform is carried out numerically.

I Hence, our solution method is semi-analytical.

I Trefethen et al. (2006) defines the following numerical approximation:

ci (x; t) = L−1 {Ci (x; s)} ≈ −
2

t
<
 X

k∈ON

wkCi (x; sk)

ff
;

where sk = zk=t, ON is the set of positive integers less than N and wk ; zk ∈ C are the
residues and poles of the best (N;N) rational approximation to ez on the negative real
line.

I Summary: Concentration can be evaluated at any x and t in the time domain.

I Attractiveness is that the solution is completely explicit. Unlike eigenfunction expansion
solutions that require a nonlinear algebraic equation to be solved for the eigenvalues:

f (–) = 0;

where f (–) := det(A(–)); A ∈ R2m×2m:
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BCs : v1c1(0; t)−D1
@c1

@x
(0; t) = v1c0;

@c2

@x
(20; t) = 0:

Benchmarked against single-layer analytical solutions (van Genuchten and Alves, 1982).

Absolute errors

t = 10−3 t = 0:1 t = 0:2 t = 0:4 t = 0:6 t = 4

4:11× 10−14 5:53× 10−10 8:69× 10−9 1:24× 10−9 5:84× 10−8 6:10× 10−10
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BCs : v1c1(0; t)−D1
@c1

@x
(0; t) = v1c0;

@c5

@x
(30; t) = 0:

Agrees with solutions tabulated by Liu et al. (1998) and Guerrero et al. (2013)
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Ri
@ci

@t
= Di

@2ci

@x2
− vi

@ci

@x
+ Mci + ‚i ; ci = (ci ;1; : : : ; ci ;n)T :

Coupled multispecies equations can be decoupled using the eigenvalue decomposition of
M (Clement, 2001) yielding standard decoupled multi-layer problems for each species.
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Single-species problem (arxiv.org/abs/2001.08387) (github.com/elliotcarr/Carr2020a):
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Abstract
A new semi-analytical solution to the advection–dispersion–reaction equation for model-
ling solute transport in layered porous media is derived using the Laplace transform. Our 
solution approach involves introducing unknown functions representing the dispersive flux 
at the interfaces between adjacent layers, allowing the multilayer problem to be solved sep-
arately on each layer in the Laplace domain before being numerically inverted back to the 
time domain. The derived solution is applicable to the most general form of linear advec-
tion–dispersion–reaction equation, a finite medium comprising an arbitrary number of lay-
ers, continuity of concentration and dispersive flux at the interfaces between adjacent lay-
ers and transient boundary conditions of arbitrary type at the inlet and outlet. The derived 
semi-analytical solution extends and addresses deficiencies of existing analytical solutions 
in a layered medium, which consider analogous processes such as diffusion or reaction–
diffusion only and/or require the solution of complicated nonlinear transcendental equa-
tions to evaluate the solution expressions. Code implementing our semi-analytical solution 
is supplied and applied to a selection of test cases, with the reported results in excellent 
agreement with a standard numerical solution and other analytical results available in the 
literature.

Keywords Advection dispersion reaction · Analytical solution · Layered media · Laplace 
transform

1 Introduction

Solute transport in porous media due to dispersion and groundwater flow is typically 
modelled using the advection–dispersion–reaction equation (van Genuchten and Alves 
1982; Leij et al. 1991; Liu et al. 1998; Goltz and Huang 2017). While solving this equa-
tion in heterogeneous porous media usually requires the application of numerical meth-
ods, analytical solutions are generally preferred when available as they are exact and 
continuous in space and time. The focus of this paper is analytical solutions for layered 

 * Elliot J. Carr 
 elliot.carr@qut.edu.au

1 School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, 
Australia

Multi-species problem (arxiv.org/abs/2006.15793) (github.com/elliotcarr/Carr2021a):
Applied Mathematical Modelling 94 (2021) 87–97 

Contents lists available at ScienceDirect 

Applied Mathematical Modelling 

journal homepage: www.elsevier.com/locate/apm 

Generalized semi-analytical solution for coupled multispecies 

advection-dispersion equations in multilayer porous media 

Elliot J. Carr ∗

School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia 

a r t i c l e i n f o 

Article history: 

Received 30 June 2020 

Revised 15 December 2020 

Accepted 9 January 2021 

Available online 19 January 2021 

Keywords: 

Contaminant transport 

Multispecies 

Multilayer 

Advection dispersion reaction 

Reaction network 

Semi-analytical 

a b s t r a c t 

Multispecies contaminant transport in the Earth’s subsurface is commonly modelled us- 

ing advection-dispersion equations coupled via first-order reactions. Analytical and semi- 

analytical solutions for such problems are highly sought after but currently limited to ei- 

ther one species, homogeneous media, certain reaction networks, specific boundary condi- 

tions or a combination thereof. In this paper, we develop a semi-analytical solution for the 

case of a heterogeneous layered medium and a general first-order reaction network. Our 

approach combines a transformation method to decouple the multispecies equations with 

a recently developed semi-analytical solution for the single-species advection-dispersion- 

reaction equation in layered media. The generalized solution is valid for arbitrary numbers 

of species and layers, general Robin-type conditions at the inlet and outlet and accommo- 

dates both distinct retardation factors across layers or distinct retardation factors across 

species. Four test cases are presented to demonstrate the solution approach with the re- 

ported results in agreement with previously published results and numerical results ob- 

tained via finite volume discretisation. MATLAB code implementing the generalized semi- 

analytical solution is made available. 

© 2021 Elsevier Inc. All rights reserved. 

1. Introduction 

Advection-dispersion equations are commonly used to predict the fate and transport of contaminants in the Earth’s 

subsurface [1] . Challenges of applying such equations in practical situations include dealing with subsurface heterogene- 

ity and multiple reactive contaminants, which together yield coupled multispecies advection-dispersion-reaction equations 

with spatially-dependent coefficients [2] . While such problems can always be solved numerically, analytical solutions are 

highly sought after as they provide greater insight into the governing transport processes and are useful for assessing the 

accuracy of numerical methods [3] . Moreover, due to being continuous in space and time, analytical solutions are typically 

computationally efficient because computing a high accuracy solution doesn’t require the use of small temporal and spatial 

discretisation step sizes. For such reasons, analytical solutions for reactive contaminant transport problems have attracted 

great interest since the mid 20th century and continue to engage researchers [2,4,5] . 

In this paper, we focus on analytical and semi-analytical solutions for reactive contaminant transport governed by cou- 

pled multispecies advection-dispersion-reaction equations. In particular, our interest is in layered media (to accommodate 

subsurface heterogeneity often observed in natural environments such as stratified soils or manufactured environments such 

∗ Corresponding author. 
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