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Laser flash method
Measuring thermal diffusivity of solids
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Most popular (Vozár and Hohenauer, 2003) and standard method (ASTM E1461-13, 2013)
for measuring the thermal diffusivity of solids.
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α – thermal diffusivity
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Half-rise time approach
Heat conduction model
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I Governing equations (Parker et al., 1961):

∂T
∂t

(x, t) = α
∂2T
∂x2 (x, t), 0 < x < L, t > 0,

T(x, 0) =


Q
ρc`

0 < x < `,

0 ` < x < L,

∂T
∂x

(0, t) = 0 (front surface),
∂T
∂x

(L, t) = 0 (rear surface).

I Nomenclature:

• T(x, t): temperature rise above initial temperature at location x and time t [◦C].
• α: thermal diffusivity [m2 s−1].
• `: depth at the front surface in which the heat pulse is instantaneously absorbed [m].
• L: length of the sample [m].
• Q: amount of heat absorbed through the front surface per unit area [J m−2].

• ρc: volumetric heat capacity [J K−1 m−3].
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Half-rise time approach
Example spatial profile of temperature over time
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Half-rise time approach
Formula for thermal diffusivity
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I Theoretical temperature rise at rear-surface:

T(L, t) = T∞

1 + 2
∞∑

n=1

(−1)n sin (nπ`/L)
nπ`/L

e−n2ω

 ,
where ω = π2αt

L2 and T∞ =
Q
ρcL .

I For small `:

T(L, t) ≈ T∞

1 + 2
∞∑

n=1

(−1)ne−n2ω

 =: T̃(L, t).

I Since T̃(L, t) = 0.5T∞ when ω = 1.370 (displayed to four significant figures), we have:

α ≈
1.37L2

π2t0.5
,

where t0.5 is the time required for the rear-surface temperature to reach 0.5T∞.
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Rear-surface integral approach
Carr (2019), Chemical Engineering Science
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I Aim: obtain a closed-form expression for∫
∞

0
[T∞ − T(L, t)] dt,

involving the thermal diffusivity, α.

I New formula for the thermal diffusivity:

α =
T∞(L2

− `2)

6
∫
∞

0 [T∞ − T(L, t)] dt

I For equally-spaced discrete rear-surface temperature data (T̃i for i = 0, . . . ,N):

α ≈
L2

6

 N∑
i=1

1 −
T̃i−1 + T̃i

2T∞

∆ti


−1

.

where ∆ti is the time between rear-surface temperature measurements.
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Rear-surface integral approach
Carr (2019), Chemical Engineering Science

Dr Elliot Carr https://elliotcarr.github.io/ 6/14

Moderate level of noise (σ(zi) = 0.02 ◦C) Signed relative error: ε =
αexact − αestimate

αexact

https://elliotcarr.github.io/


AMSI VRS Project
Christyn Wood
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Christyn Wood
QUT Bachelor of Mathematics student (now MPhil student)

AMSI Vacation Research Scholar (VRS) Project (2018–2019)

Project Objectives:

1. Remove non-physical assumption that heat is instanta-
neously absorbed at the front surface.

2. Extend to heterogeneous samples comprising two layers
with different thermo-physical properties.
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Rear-surface integral approach
Incorporating heat pulse
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I Governing equations (Azumi and Takahashi, 1981; Czél et al., 2013; Heckman, 1973):

∂T
∂t

(x, t) = α
∂2T
∂x2 (x, t), 0 < x < L, t > 0,

T(x, 0) = 0, 0 < x < L,

−k
∂T
∂x

(0, t) = q(t) (front surface),
∂T
∂x

(L, t) = 0 (rear surface).

I Nomenclature:

• T(x, t): temperature rise above initial
temperature at location x and time t
[◦C].

• α: thermal diffusivity [m2 s−1].

• k: thermal conductivity [W m−1 K−1].
• q(t): heat flux applied by the laser pulse

at the front surface [m].
• L: length of the sample [m].
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Rear-surface integral approach
Incorporating heat pulse
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Rear-surface integral approach
Incorporating heat pulse
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I Aim: obtain a closed-form expression for∫
∞

0
[T∞ − T(L, t)] dt,

involving the thermal diffusivity, α.

I Note that
∫
∞

0 [T∞ − T(L, t)] dt = u(L), where

u(x) =

∫
∞

0
[T∞ − T(x, t)] dt.

I Derive a differential equation satisfied by u(x):

u′′(x) =

∫
∞

0
−
∂2T
∂x2 dt =

∫
∞

0
−

1
α
∂T
∂t

∂T
∂t

= α
∂2T
∂x2

dt =
1
α

[T(x, 0) − T∞] = −
T∞
α
.

I Solution is a quadratic: u(x) = c0 + c1x −
T∞x2

2α
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Rear-surface integral approach
Incorporating heat pulse
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I Boundary and auxiliary conditions (where Q∞ =
∫
∞

0 q(t) dt):

Front surface : u′(0) =

∫
∞

0
−
∂T
∂x

(0, t) dt =

∫
∞

0

q(t)
k

dt =
Q∞

k
,

Rear surface : u′(L) =

∫
∞

0
−
∂T
∂x

(L, t) dt =

∫
∞

0
0 dt = 0,

Heat conservation : ρc
∫ L

0
u(x) dx =

∫
∞

0
[Q∞ −Q(t)] dt.

I Solution of boundary value problem (where Q(t) =
∫ t

0 q(s) ds):

u(x) =

∫
∞

0 [Q∞ −Q(t)] dt

ρcL
+

T∞L
α

[
x −

L
3
−

x2

2L

]
.

I Recalling
∫
∞

0 [T∞ − T(L, t)] dt = u(L) yields thermal diffusivity:

α =
L2

6

{∫
∞

0

[
1 −

T(L, t)
T∞

]
dt −

∫
∞

0

[
1 −

Q(t)
Q∞

]
dt

}−1
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Rear-surface integral approach
Two-layer samples
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∂T1

∂t
(x, t) = α1

∂2T1

∂x2 (x, t), 0 < x < `1, t > 0,

∂T2

∂t
(x, t) = α2

∂2T2

∂x2 (x, t), `1 < x < L, t > 0,

Initial conditions:

T1(x, 0) = 0, 0 < x < `1,

T2(x, 0) = 0, `1 < x < L,

Boundary conditions:

−k1
∂T1

∂x
(0, t) = q(t), t > 0,

∂T2

∂x
(L, t) = 0, t > 0,

Interface conditions:

T1(`1, t) = T2(`1, t), t > 0,

k1
∂T1

∂x
(`1, t) = k2

∂T2

∂x
(`1, t), t > 0.
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Rear-surface integral approach
Two-layer samples
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I Similar analysis yields the thermal diffusivity in each layer:

α1 =
`2

1(`1ρ1c1 + 3`2ρ2c2)α2

6α2(ρ1c1`1 + ρ2c2`2)
(
IT − Iq

)
− `2

2(3`1ρ1c1 + `2ρ2c2)

α2 =
`2

2(3`1ρ1c1 + `2ρ2c2)α1

6α1(ρ1c1`1 + ρ2c2`2)(IT − Iq) − `2
1[`1ρ1c1 + 3`2ρ2c2]

where

IT =

∫
∞

0

[
1 −

T2(L, t)
T∞

]
dt,

Iq =

∫
∞

0

[
1 −

Q(t)
Q∞

]
dt.

I Formulas express the thermal diffusivity in each layer in terms of the other layer.

I Level of accuracy is similar to homogeneous (single-layer) estimate.
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Summary and Conclusions
Carr and Wood (2019)
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I New formulas for calculating thermal diffusivity from laser flash experiments:

• Remove assumption that heat is instantaneously absorbed at front surface.
• Accommodate arbitrary heat pulse shapes and two-layer samples.
• Accuracy and variability of estimates is similar to original formula of Carr (2019).

I Limitations:

• Analysis is one-dimensional.
• Material is assumed to be perfectly thermally insulated (no heat loss).

Rear-surface integral method for calculating thermal diffusivity:
Finite pulse time correction and two-layer samples
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a b s t r a c t

We study methods for calculating the thermal diffusivity of solids from laser flash experiments. This
experiment involves subjecting the front surface of a small sample of the material to a heat pulse and
recording the resulting temperature rise on the opposite (rear) surface. Recently, a method was devel-
oped for calculating the thermal diffusivity from the rear-surface temperature rise, which was shown
to produce improved estimates compared with the commonly used half-time approach. This so-called
rear-surface integral method produced a formula for calculating the thermal diffusivity of homogeneous
samples under the assumption that the heat pulse is instantaneously absorbed uniformly into a thin layer
at the front surface. In this paper, we show how the rear-surface integral method can be applied to a more
physically realistic heat flowmodel involving the actual heat pulse shape from the laser flash experiment.
New thermal diffusivity formulas are derived for handling arbitrary pulse shapes for either a homoge-
neous sample or a heterogeneous sample comprising two layers of different materials. Presented numer-
ical experiments confirm the accuracy of the new formulas and demonstrate how they can be applied to
the kinds of experimental data arising from the laser flash experiment.

� 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The most popular technique for measuring the thermal diffusiv-
ity of a solid material is the laser flash method [1–3]. Originally
developed by Parker et al. [4], this method involves subjecting
the front surface of a small sample of the material to a heat pulse
of radiant energy and recording the resulting temperature rise on
the opposite (rear) surface of the sample (Fig. 1). The thermal dif-
fusivity is then calculated from the rear-surface temperature rise
curve by developing a mathematical model describing the heat
flow emanating from the front surface and analysing the solution
of this model at the rear surface.

Parker et al. [4] assumed the sample is homogeneous and ther-
mally insulated; the heat pulse is instantaneously and uniformly
absorbed by a thin layer at the front surface; and the heat flow is
one-dimensional in the direction of the thickness of the sample
extending from the front surface to the rear surface (Fig. 1b). These
simplifying assumptions yield the now famous and widely-used
formula [5–8] for the thermal diffusivity:

a � 1:37L2

p2t0:5
; ð1Þ

where L is the thickness of the sample and t0:5 is the half-rise time,
the time required for the rear-surface temperature rise to reach one
half of its maximum (steady-state) value T1 (Fig. 1d).

Since 1961, many papers have presented advances and exten-
sions on Parker et al.’s original method. In particular, numerous
papers have focussed on the finite pulse-time effect, that is, the
observation that the heat pulse occurs over a finite duration
[9,10] and is rarely well approximated by an ideal instantaneous
pulse (as assumed by Parker et al. [4]). In the one-dimensional case,
the boundary condition imposing thermal insulation at the front sur-
face [4,11] is replaced by a boundary condition specifying the heat
flux applied at the front surface based on the actual shape of the heat
pulse [9] (Fig. 1a). Commonly, simple functions are used to represent
the pulse shape such as those describing rectangular [12], triangular
[9,12] and exponential [13] pulses. For the half-rise time approach,
accounting for the finite-pulse time leads to small corrections
[9,12] to the formula for the thermal diffusivity (1).

Considerable research activity has also focussed on the applica-
tion of the laser flash method to layered samples consisting of two
or more adjacent homogeneous layers with distinct thermal diffu-
sivities [13–16]. For a two-layer sample, only one of the thermal
diffusivities can be calculated from the temperature rise recorded
at the rear surface [15,17]. In this case, assuming the thermal dif-
fusivity of one of the layers is known, extension of the half-rise

https://doi.org/10.1016/j.ijheatmasstransfer.2019.118609
0017-9310/� 2019 Elsevier Ltd. All rights reserved.
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