ANZIAM 2017 Conference Hahndorf, South Australia, 5-9 February 2017

Using volume averaging to correct the boundary conditions in macroscale models of multilayer diffusion

Elliot Carr (elliot.carr@qut.edu.au)

School of Mathematical Sciences Queensland University of Technology

Joint work with...

Prof. Ian Turner

School of Mathematical Sciences Queensland University of Technology

Prof. Patrick Perré

Laboratory of Chemical Engineering and Materials CentraleSupélec, France

Motivation: Transport Processes in Heterogeneous Media

 Example - Linear Parabolic Transport Equation:

$$egin{aligned} rac{\partial u}{\partial t} &= oldsymbol{
abla} \cdot \left(oldsymbol{K}(oldsymbol{x}) oldsymbol{
abla} u
ight), \ oldsymbol{x} \in \Omega \subset \mathbb{R}^d. \end{aligned}$$

- K(x) varies with position x on a small length scale
- Computational cost of direct numerical simulation is prohibitively expensive

▶ Strategies to alleviate problem: Two-scale¹ or Macroscale² Modelling

 $^{^{1}}$ Abdulle and E (2003); Carr et al. (2016); Szymkiewicz and Lewandowska (2008) 2 Auriault (1994); Chen et al. (2015); Whitaker (1998)

1D Prototype Problem: Layered Diffusion

▶ Linear diffusion in each layer:

$$\frac{\partial u_i}{\partial t} = \kappa_i \frac{\partial^2 u_i}{\partial x^2}, \quad u_i(x,0) = u_0,$$
$$i = 1, \dots, m.$$

External boundary conditions:

$$a_L u_1(0,t) + b_L \frac{\partial u_1}{\partial x}(0,t) = c_L,$$

$$a_R u_m(L,t) + b_R \frac{\partial u_m}{\partial x}(L,t) = c_R.$$

Internal boundary conditions at the interfaces:

$$u_i(l_i,t) = u_{i+1}(l_i,t), \quad \kappa_i \frac{\partial u_i}{\partial x}(l_i,t) = \kappa_{i+1} \frac{\partial u_{i+1}}{\partial x}(l_i,t), \quad i = 1, \dots, m-1.$$

1D Prototype Problem: Layered Diffusion

▶ Linear diffusion in each layer:

$$\frac{\partial u_i}{\partial t} = \kappa_i \frac{\partial^2 u_i}{\partial x^2}, \quad u_i(x,0) = u_0, \\ i = 1, \dots, m.$$

External boundary conditions:

$$a_L u_1(0,t) - b_L \frac{\partial u_1}{\partial x}(0,t) = c_L,$$

$$a_R u_m(L,t) + b_R \frac{\partial u_m}{\partial x}(L,t) = c_R.$$

▶ Internal boundary conditions at the interfaces:

$$u_i(l_i,t) = u_{i+1}(l_i,t), \quad \kappa_i \frac{\partial u_i}{\partial x}(l_i,t) = \kappa_{i+1} \frac{\partial u_{i+1}}{\partial x}(l_i,t), \quad i = 1, \dots, m-1.$$

Macroscopic modelling

- Replace heterogeneous medium with an effective homogeneous medium
- Macroscopic equation:

$$\frac{\partial U}{\partial t} = \kappa_{\text{eff}} \frac{\partial^2 U}{\partial x^2}, \quad 0 < x < L.$$

where $u_i(x,t) \simeq U(x,t)$ in some average sense.

Effective diffusivity: ⊳

$$\kappa_{\text{eff}} = \left(\frac{1}{l_m - l_0} \sum_{i=1}^m \frac{l_i - l_{i-1}}{\kappa_i}\right)^{-1}$$

Question: What BCs should be imposed on macroscale field?

▶ *Observation*: Averaged microscale field does not satisfy Dirichlet BC at x = 0.

▶ *Observation*: Applying same Robin BC on macroscale leads to a poor match.

Volume averaging

Averaging operator:

$$\langle \phi \rangle \!= \frac{1}{2\delta} \int_{-\delta}^{\delta} \phi(x+\xi,t) \, d\xi$$

► Average plus perturbation decomposition:

$$u_i = \langle u \rangle + \widetilde{u}_i, \quad i = 1, \dots, m.$$

Averaging and making some assumptions:

$$\left\langle \frac{\partial u}{\partial x} \right\rangle = \left\langle \frac{\partial}{\partial x} \left(\kappa(x) \frac{\partial u}{\partial x} \right) \right\rangle \quad \rightarrow \quad \frac{\partial \langle u \rangle}{\partial t} \simeq \frac{\partial}{\partial x} \left(\kappa_{\text{eff}} \frac{\partial \langle u \rangle}{\partial x} \right)$$

with

$$\kappa_{\text{eff}} = \frac{1}{l_p - l_0} \sum_{k=1}^p \int_{l_{k-1}}^{l_k} \kappa_k \left(\psi'_k(x) + 1 \right) \, dx.$$

where $\psi_k(x)$ $(k=1,\ldots,m)$ satisfy a suitable steady-state microscale problem.

Volume averaging

Averaging operator:

$$\langle \phi \rangle \!= \frac{1}{2\delta} \int_{-\delta}^{\delta} \phi(x+\xi,t) \, d\xi$$

► Average plus perturbation decomposition:

$$u_i = \langle u \rangle + \widetilde{u}_i, \quad i = 1, \dots, m.$$

Averaging and making some assumptions:

$$\left\langle \frac{\partial u}{\partial x} \right\rangle = \left\langle \frac{\partial}{\partial x} \left(\kappa(x) \frac{\partial u}{\partial x} \right) \right\rangle \quad \rightarrow \quad \frac{\partial U}{\partial t} = \frac{\partial}{\partial x} \left(\kappa_{\text{eff}} \frac{\partial U}{\partial x} \right)$$

with

$$\kappa_{\text{eff}} = \frac{1}{l_p - l_0} \sum_{k=1}^p \int_{l_{k-1}}^{l_k} \kappa_k \left(\psi'_k(x) + 1 \right) \, dx.$$

where $\psi_k(x)$ $(k=1,\ldots,m)$ satisfy a suitable steady-state microscale problem.

Deriving the Macroscale BCs

Boundary condition at x = 0:

▶ Insert *average plus perturbation* decomposition:

$$a_L u_1 - b_L \frac{\partial u_1}{\partial x} = c_L \quad \rightarrow \quad a_L \left[\langle u \rangle + \widetilde{u}_1 \right] - b_L \frac{\partial}{\partial x} \left[\langle u \rangle + \widetilde{u}_1 \right] = c_L$$

▶ Volume averaging assumptions³:

A1:
$$\tilde{u}_1 \simeq \psi_1(x) \frac{\partial \langle u \rangle}{\partial x}$$
 A2: $\frac{\partial \tilde{u}_1}{\partial x} \simeq \psi_1'(x) \frac{\partial \langle u \rangle}{\partial x}$
 $a_L \langle u \rangle - \left[b_L(1 + \psi_1'(0)) - a_L \psi_1(0) \right] \frac{\partial \langle u \rangle}{\partial x} \simeq c_L.$

► *Corrected* Macroscale BC:

$$a_L U - \left[b_L (1 + \psi_1'(0)) - a_L \psi_1(0)\right] \frac{\partial U}{\partial x} = c_L$$

³Davit et al. (2013); Whitaker (1998)

Recap

Microscale Model:

$$\frac{\partial u_i}{\partial t} = \frac{\partial}{\partial x} \left(\kappa_i \frac{\partial u_i}{\partial x} \right), \quad u_i(x,0) = u_0, \quad i = 1, \dots, m,$$
$$u_{i+1}(l_i,t) = u_i(l_i,t), \quad \kappa_{i+1} \frac{\partial u_{i+1}}{\partial x}(l_i,t) = \kappa_i \frac{\partial u_i}{\partial x}(l_i,t), \quad i = 1, \dots, m,$$
$$a_L u_1(0,t) - b_L \frac{\partial u_1}{\partial x}(0,t) = c_L, \quad a_R u_m(L,t) + b_R \frac{\partial u_m}{\partial x}(L,t) = c_R,$$

Macroscale Model:

$$\begin{aligned} \frac{\partial U}{\partial t} &= \frac{\partial}{\partial x} \left(\kappa_{\text{eff}} \frac{\partial U}{\partial x} \right), \quad U(x,0) = u_0, \\ a_L U(0,t) &- \left[b_L (1 + \psi_1'(0)) - a_L \psi_1(0) \right] \frac{\partial U}{\partial x}(0,t) = c_L, \\ a_R U(L,t) &+ \left[b_R (1 + \psi_p'(l_p)) + a_R \psi_p(l_p) \right] \frac{\partial U}{\partial x}(L,t) = c_R. \end{aligned}$$

▶ *Question*: What happens for a homogeneous medium?

Corrected Macroscale BCs

Microscale to Macroscale BC transisition (x = 0):

▶ Dirichlet BC \rightarrow Robin BC⁴

$$u_1 = c_L \quad \to \quad U + \psi_1(0) \frac{\partial U}{\partial x} = c_L$$

▶ Neumann BC → Neumann BC

$$\frac{\partial u_1}{\partial x} = c_L \quad \to \quad \frac{\kappa_{\text{eff}}}{\kappa_1} \frac{\partial U}{\partial x} = c_L$$

 $\blacktriangleright \ \ \mathsf{Flux} \ \mathsf{specified} \ \ \mathsf{BC} \rightarrow \mathsf{Flux} \ \mathsf{specified} \ \ \mathsf{BC}$

$$\kappa_1 \frac{\partial u_1}{\partial x} = c_L \quad \to \quad \kappa_{\text{eff}} \frac{\partial U}{\partial x} = c_L$$

▶ Newton-type $BC \rightarrow Newton-type BC$

$$\kappa_1 \frac{\partial u_1}{\partial x} = \sigma(u_1 - u_\infty) \quad \to \quad [\kappa_{\text{eff}} - \sigma \psi_1(0)] \frac{\partial U}{\partial x} = \sigma(U - u_\infty)$$

⁴As in Allaire and Amar (1999).

Simplest case: Biperiodic Layers of equal width

Corrected Macroscale BCs at x = 0:

▶ Dirichlet BC \rightarrow Robin BC⁵

$$u_1 = c_L \quad \rightarrow \quad U - \frac{h}{2} \frac{\kappa_2 - \kappa_1}{\kappa_1 + \kappa_2} \frac{\partial U}{\partial x} = c_L$$

 $\blacktriangleright \text{ Neumann BC} \rightarrow \text{Neumann BC}$

$$\frac{\partial u_1}{\partial x} = c_L \quad \to \quad \frac{\kappa_{\text{eff}}}{\kappa_1} \frac{\partial U}{\partial x} = c_L$$

▶ Flux specified BC \rightarrow Flux specified BC

$$\kappa_1 \frac{\partial u_1}{\partial x} = c_L \quad \to \quad \kappa_{\text{eff}} \frac{\partial U}{\partial x} = c_L$$

 $\blacktriangleright \text{ Newton-type BC} \rightarrow \text{Newton-type BC}$

$$\kappa_1 \frac{\partial u_1}{\partial x} = \sigma(u_1 - u_\infty) \quad \to \quad \left[\kappa_{\text{eff}} - \sigma \frac{h}{2} \frac{\kappa_1 - \kappa_2}{\kappa_1 + \kappa_2}\right] \frac{\partial U}{\partial x} = \sigma(U - u_\infty)$$

⁵As in Chen (2015).

Simplest case: Biperiodic Layers of equal width

Standard Macroscale BCs $(h \rightarrow 0)$ at x = 0:

 $\blacktriangleright \text{ Dirichlet BC} \rightarrow \text{Dirichlet BC}$

$$u_1 = c_L \quad \rightarrow \quad U = c_L$$

 $\blacktriangleright \text{ Neumann BC} \rightarrow \text{Neumann BC}$

$$\frac{\partial u_1}{\partial x} = c_L \quad \to \quad \frac{\kappa_{\text{eff}}}{\kappa_1} \frac{\partial U}{\partial x} = c_L$$

 $\blacktriangleright \ \ \mathsf{Flux} \ \mathsf{specified} \ \ \mathsf{BC} \rightarrow \mathsf{Flux} \ \mathsf{specified} \ \ \mathsf{BC}$

$$\kappa_1 \frac{\partial u_1}{\partial x} = c_L \quad \to \quad \kappa_{\text{eff}} \frac{\partial U}{\partial x} = c_L$$

 $\blacktriangleright \text{ Newton-type BC} \rightarrow \text{Newton-type BC}$

$$\kappa_1 \frac{\partial u_1}{\partial x} = \sigma(u_1 - u_\infty) \quad \to \quad \kappa_{\text{eff}} \frac{\partial U}{\partial x} = \sigma(U - u_\infty)$$

Something funny going on...

Consider the Macroscale Model:

$$\frac{\partial U}{\partial t} = \frac{\partial}{\partial x} \left(\kappa_{\text{eff}} \frac{\partial U}{\partial x} \right), \quad U(x,0) = u_0,$$
$$U(0,t) - \underbrace{\frac{h}{2} \frac{\kappa_2 - \kappa_1}{\kappa_1 + \kappa_2}}_{\tilde{b}_L} \frac{\partial U}{\partial x}(0,t) = c_L, \quad \frac{\partial U}{\partial x}(L,t) = 0.$$

Macroscale field:

$$U(x,t) = U_{\infty}(x) + \sum_{n=1}^{\infty} c_n e^{-t\lambda_n \kappa_{\text{eff}}} \phi_n(x) \,,$$

Eigenvalue problem:

$$\mathcal{L}\phi_n = \lambda_n \phi_n , \qquad \mathcal{L} = -\frac{\partial^2}{\partial x^2} ,$$

$$\phi_n(l_0) - \tilde{b}_L \phi'_n(l_0) = 0 , \qquad \phi'_n(l_m) = 0$$

▶ If $\kappa_1 > \kappa_2$ then $\tilde{b}_L < 0$ which means there is one negative eigenvalue.

Summary, Conclusions & Future Work

- ▶ Investigated the form of the BCs in a macroscale model of layered diffusion
- Using the method of volume averaging and an "average plus perturbation" decomposition of the microscale field, we derived a set of *corrected* BCs for the macroscale field.
- ▶ Corrected BCs improves approximation of the averaged microscale field
- ▶ Reconstructed field that is in excellent agreement with the true microscale field
- ▶ Problems in higher-dimensional space? 2D? 3D?
- ▶ Other transport equations: Advection-Diffusion?

Thank you!

References

- Abdulle, A. and E, W. (2003). Finite difference heterogeneous multi-scale method for homogenization problems. J. Comput. Phys., 191:18–39.
- Allaire, G. and Amar, M. (1999). Boundary layer tails in periodic homogenization. *ESAIM Contr. Op. Ca. Va.*, 4:209–243.
- Auriault, J.-L. (1994). Macroscopic modelling of heat transfer in composites with interfacial thermal barrier. Int. J. Heat Mass Tran., 37(18):2885–2892.
- Carr, E. J., Perré, P., and Turner, I. W. (2016). The extended distributed microstructure model for gradient-driven transport: A two-scale model for bypassing effective parameters. J. Comput. Phys., 327:810–829.
- Chen, C. (2015). Multiscale modelling of continuum and discrete dynamics in materials with complicated microstructure. PhD thesis, The University of Adelaide.
- Chen, C., Roberts, A. J., and Bunder, J. E. (2015). Macroscale boundary conditions for a non-linear heat exchanger. ANZIAM J., 56(CTAC2014):C16–C31.
- Davit, Y., Bell, C. G., Byrne, H. M., Chapman, L. A. C., Kimpton, L. S., Lang, G. E., Leonard, K. H. L., Oliver, J. M., Pearson, N. C., Shipley, R. J., Waters, S. L., Whiteley, J. P., Wood, B. D., and Quintard, M. (2013). Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare? *Adv. Water Resour.*, 62:178–206.
- Szymkiewicz, A. and Lewandowska, J. (2008). Micromechanical approach to unsaturated water flow in structured geomaterials by two-scale computations. Acta Geotechnica, 3:37–47.
- Whitaker, S. (1998). Coupled transport in multiphase systems: a theory of drying. In J. P. Hartnett, T. F. Irvine, Y. I. C. and Greene, G. A., editors, *Advances in Heat Transfer*, volume 31, pages 1–104. Elsevier.

Results: Dirichlet-Neumann

Reconstructed microscale field:

$$u_i = \langle u \rangle + \widetilde{u}_i \quad \to \quad \widehat{u}_i = U + \psi_i(x) \frac{\partial U}{\partial x} \quad (i = 1, \dots, m).$$

Results: Dirichlet-Neumann

Reconstructed microscale field:

$$u_i = \langle u \rangle + \widetilde{u}_i \quad \to \quad \widehat{u}_i = U + \psi_i(x) \frac{\partial U}{\partial x} \quad (i = 1, \dots, m).$$

